Abstract

Robust and tolerant single-transverse-mode photonic crystal GaInAs vertical-cavity surface-emitting lasers are fabricated and investigated. Triangular lattice patterns of rectangular air holes of various etch-depths are introduced in the top mirror. The stable single-transverse-mode operation is observed with a large margin of allowance in the etch depth (t=2.5±0.6 µm). This stable mode selection mechanism is explained by the mode competition between the two lowest photonic crystal guided modes that are influenced by both the index guiding effect and the etch-depth dependent modal losses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, �??Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,�?? Electron. Lett. 36, 2018-2019 (2000).
    [CrossRef]
  2. T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, �??Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,�?? Electron. Lett. 37, 225-226 (2001).
    [CrossRef]
  3. T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, �??Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,�?? Electron. Lett. 37, 566-567 (2001).
    [CrossRef]
  4. Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, �??Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,�?? Appl. Phys. Lett. 75, 22-24 (1999).
    [CrossRef]
  5. J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, �??InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,�?? Electron. Lett. 36, 1384-1385 (2000).
    [CrossRef]
  6. T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, �??Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,�?? Jpn. J. Appl. Phys. 41, L562-L564 (2002).
    [CrossRef]
  7. F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, �??Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network ,�?? IEEE Photon. Technol. Lett. 12, 125-127 (2000).
    [CrossRef]
  8. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
    [CrossRef]
  9. D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, �??Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 82, 3182-3184 (2003).
    [CrossRef]
  10. N. Yokouchi, A. J. Danner, and K. D. Choquette, �??Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,�?? Appl. Phys. Lett. 82, 3608-3610 (2003).
    [CrossRef]
  11. J. W. Matthews, and A. E. Blakeslee, �??Defects in epitaxial multilayers : l. Misfit dislocations,�?? J. Cryst. Growth. 27, 118-125 (1974).
  12. D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, �??Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,�?? J. Cryst. Growth. 221, 503-508 (2000).
    [CrossRef]
  13. T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]

Appl. Phys. Lett. (4)

Z. Zou, D. L. Huffaker, S. Csutak, and D. G. Deppe, �??Ground state lasing from a quantum-dot oxideconfined vertical-cavity surface-emitting laser,�?? Appl. Phys. Lett. 75, 22-24 (1999).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, �??Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting laser,�?? Appl. Phys. Lett. 80, 3901-3903 (2002).
[CrossRef]

D. S. Song, Y. J. Lee, H. W. Choi, and Y. H. Lee, �??Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity surface-emitting lasers,�?? Appl. Phys. Lett. 82, 3182-3184 (2003).
[CrossRef]

N. Yokouchi, A. J. Danner, and K. D. Choquette, �??Vertical-cavity surface-emitting laser operating with photonic crystal seven-point defect structure,�?? Appl. Phys. Lett. 82, 3608-3610 (2003).
[CrossRef]

Electron. Lett. (4)

J. A. Lott, N. N. Ledentsov, V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, B. V. Volovik, ZH. I. Alferov, and D. Bimberg, �??InAs-InGaAs quantum dot VCSELs on GaAs substrates emitting at 1.3 µm,�?? Electron. Lett. 36, 1384-1385 (2000).
[CrossRef]

S. Sato, N. Nishiyama, T. Miyamoto, T. Takahashi, N. Jikutani, M. Arai, A. Matsutani, F. Koyama, and K. Iga, �??Continuous wave operation of 1.26 µm GaInNAs/GaAs vertical-cavity surface-emitting lasers grown by metalorganic chemical vapour deposition,�?? Electron. Lett. 36, 2018-2019 (2000).
[CrossRef]

T. Kageyama, T. Miyamoto, S. Makino, Y. Ikenaga, N. Nishiyama, A. Matsutani, F. Koyama, and K. Iga, �??Room temperature continuous-wave operation of GaInNAs/GaAs VCSELs grown by chemical beam epitaxy with output power exceeding 1 mW,�?? Electron. Lett. 37, 225-226 (2001).
[CrossRef]

T. Anan, M. Yamada, K. Nishi, K. Kurihara, K. Tokutome, A. Kamei, and S. Sugou, �??Continuous-wave operation of 1.30 µm GaAsSb/GaAs VCSELs,�?? Electron. Lett. 37, 566-567 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Koyama, D. Schlenker, T. Miyamoto, Z. Chen, A. Matsutani, T. Sakaguchi, and K. Iga, �??Data transmission over single-mode fiber by using 1.2-µm uncooled GaInAs-GaAs laser for Gb/s local area network ,�?? IEEE Photon. Technol. Lett. 12, 125-127 (2000).
[CrossRef]

J. Cryst. Growth (1)

D. Schlenker, T. Miyamoto, Z. Chen, M. Kawaguchi, T. Kondo, E. Gouards, F. Koyama, and K. Iga, �??Critical layer thickness of 1.2-µm highly strained GaInAs/GaAs qusntum wells,�?? J. Cryst. Growth. 221, 503-508 (2000).
[CrossRef]

J. Cryst. Growth. (1)

J. W. Matthews, and A. E. Blakeslee, �??Defects in epitaxial multilayers : l. Misfit dislocations,�?? J. Cryst. Growth. 27, 118-125 (1974).

Jpn. J. Appl. Phys. (1)

T. Kondo, M. Arai, M. Azuchi, T. Uchida, A. Matsutani, T. Miyamoto, and F. Koyama, �??Low threshold current density operation of 1.16 µm highly strained GaInAs/GaAs vertical-cavity surface-emitting lasers on (100) GaAs substrate,�?? Jpn. J. Appl. Phys. 41, L562-L564 (2002).
[CrossRef]

Opt. Lett. (1)

T. A. Birks, J. C. Knight, and P. St. J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Top view of the fabricated PC-VCSEL with rectangular air-holes.

Fig. 2.
Fig. 2.

Spectra of the rectangular air-hole PC-VCSELs with different air-hole depths of (a) 0, (b) 5, (c) 8, (d) 12, (e) 15, (f) 18, and (g)>22 pairs, at just above- and above-threshold currents.

Fig. 3.
Fig. 3.

Near-field CCD mode patterns. (a) Reference VCSEL. (b) Shallow-etch sample (8-pairs of GaAs/Al0.8Ga0.2As etched layers, 12 mA). (c) Mid-etch sample (12 mA). In the CCD images, the circle indicates the inner boundary of the top electrode and the rectangles show positions of the air-holes.

Fig. 4.
Fig. 4.

Polarization resolved L-I curves of (a) vertically-oriented, and (b) horizontally-oriented air-hole PC-VCSELs.

Fig. 5.
Fig. 5.

(a) L-I curves of the PC-VCSELs with different air hole depths. (b) L-I curves of the near threshold currents.

Fig. 6.
Fig. 6.

(a) The waveguide structure used to calculate the mode profiles. nc=3.25. (b) Fundamental (1st-order) PC-guided mode. (c) 2nd-order PC-guided mode. (d) 3rd-order PC-guided mode.

Fig. 7.
Fig. 7.

Measured spectral separation between the fundamental and 2nd-order PC-guided modes. The right-most data point was positioned after converting the physical depth (4.3 µm) into the number of DBR pairs. The dashed line is the asymptotic value from the plane wave expansion method with the fullydrilled model structure. The inset figure is a spectrum of the mid-etch sample below-threshold current (2 mA), showing the two PC-guided modes.

Fig. 8.
Fig. 8.

Modal losses of the 1st-order and 2nd-order PC-guided mode versus air-holes depth.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Modal Loss = cross section ε ( r ) E ( r ) 2 ( 1 R ( r ) ) d r cross section ε ( r ) E ( r ) 2 d r

Metrics