Abstract

An out of plane optical sensitive configuration for pulsed digital holography was used to detect biological tissue inside solid organic materials like gels. A loud speaker and a shaker were employed to produce a mechanical wave that propagates through the gel in such a way that it generates vibrational resonant modes and transient events on the gel surface. Gel surface micro displacements were observed between the firing of two laser pulses, both for a steady resonant mode and for different times during the transient event. The biological tissue sample inserted approximately 2 cm inside the gel diffracts the original mechanical wave and changes the resonant mode pattern or the transient wave on the gel surface. This fact is used to quantitatively measure the gel surface micro displacement. Comparison of phase unwrapped patterns, with and without tissue inside the gel, allows the rapid identification of the existence of tissue inside the gel. The results for the resonant and transient conditions show that the method may be reliably used to study, compare and distinguish data from inside homogeneous and in-homogeneous solid organic materials.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Hong, D. Sheffer, and W. Loughry, �??Detection of breast lesions by holographic interferometry,�?? J. Biomed. Opt. 4, 368 -375 (1999).
    [CrossRef] [PubMed]
  2. J. Woisetschlager, D. B. Sheffer, C. William Loughry, K. Somasundaram, S. K. Chawla, P. J. Wesolowski, �??Phase-shifting holographic interferometry for breast cancer detection,�?? App. Opt. 33, 5011-5015 (1994).
    [CrossRef]
  3. S. Shedin, A. O. Wahlin, and P. O. Gren., �??Transient acoustic near field in air generated by impacted plates,�?? J. Acoust. Soc. Am. 99, 700-705 (1996).
    [CrossRef]
  4. F. Mendoza Santoyo, G. Pedrini, Ph. Fröning, H.J. Tiziani, y P. H. Kulla, �??Comparison of double-pulse digital holography and HPFEM measurements,�?? Op. Lasers Eng. 32, 529-536 (1999).
    [CrossRef]
  5. A. Fernández, A. J. Moore, C. Pérez-López, A. F. Doval, and J. Blanco García, �??Study o transient deformations with pulsed TV holography: application to crack detection,�?? Appl. Opt. 36, 2058-2065 (1997).
    [CrossRef] [PubMed]
  6. C. Trillo, D. Cernadas, �?. F. Doval, C. López, B. V. Dorrío, and J. L. Fernández., �??Detection of transient surfaces acoustic waves of nanometric amplitude with double-pulsed TV holography,�?? Appl. Opt. 42, 1228-1235 (2003).
    [CrossRef] [PubMed]
  7. P. Gren, S. Schedin, and X. Li, �??Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography,�?? Appl. Opt. 37, 834-840 (1998).
    [CrossRef]
  8. S. Schedin, G. Pedrini, H. J. Tiziani, �??Pulsed Digital Holography for Deformation Measurements on Biological Tissues,�?? Appl. Opt. 39, 2853-2857 (2000).
    [CrossRef]
  9. G. Pedrini. H.J. Tiziani, and Y. Zou, �??Digital double pulse-TV-Holography,�?? Opt. Lasers Eng. 26, 199-219 (1997).
    [CrossRef]

App. Opt. (1)

J. Woisetschlager, D. B. Sheffer, C. William Loughry, K. Somasundaram, S. K. Chawla, P. J. Wesolowski, �??Phase-shifting holographic interferometry for breast cancer detection,�?? App. Opt. 33, 5011-5015 (1994).
[CrossRef]

Appl. Opt. (3)

A. Fernández, A. J. Moore, C. Pérez-López, A. F. Doval, and J. Blanco García, �??Study o transient deformations with pulsed TV holography: application to crack detection,�?? Appl. Opt. 36, 2058-2065 (1997).
[CrossRef] [PubMed]

P. Gren, S. Schedin, and X. Li, �??Tomographic reconstruction of transient acoustic fields recorded by pulsed TV holography,�?? Appl. Opt. 37, 834-840 (1998).
[CrossRef]

S. Schedin, G. Pedrini, H. J. Tiziani, �??Pulsed Digital Holography for Deformation Measurements on Biological Tissues,�?? Appl. Opt. 39, 2853-2857 (2000).
[CrossRef]

Appl.Opt. (1)

C. Trillo, D. Cernadas, �?. F. Doval, C. López, B. V. Dorrío, and J. L. Fernández., �??Detection of transient surfaces acoustic waves of nanometric amplitude with double-pulsed TV holography,�?? Appl. Opt. 42, 1228-1235 (2003).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

S. Shedin, A. O. Wahlin, and P. O. Gren., �??Transient acoustic near field in air generated by impacted plates,�?? J. Acoust. Soc. Am. 99, 700-705 (1996).
[CrossRef]

J. Biomed. Opt. (1)

H. Hong, D. Sheffer, and W. Loughry, �??Detection of breast lesions by holographic interferometry,�?? J. Biomed. Opt. 4, 368 -375 (1999).
[CrossRef] [PubMed]

Op. Lasers Eng. (1)

F. Mendoza Santoyo, G. Pedrini, Ph. Fröning, H.J. Tiziani, y P. H. Kulla, �??Comparison of double-pulse digital holography and HPFEM measurements,�?? Op. Lasers Eng. 32, 529-536 (1999).
[CrossRef]

Opt. Lasers Eng. (1)

G. Pedrini. H.J. Tiziani, and Y. Zou, �??Digital double pulse-TV-Holography,�?? Opt. Lasers Eng. 26, 199-219 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Optical set up for pulsed digital holography: M, mirror; BS, beam splitter; L, lens; NL, negative lens; OF, optical fiber; A, aperture; T, tumor; LS, loudspeaker.

Fig. 2.
Fig. 2.

Unwrapped phase map for the resonant mode at 44 Hz, without inhomogeneity.

Fig. 3.
Fig. 3.

Unwrapped phase map for a) tumor b) 2.1 cm marble.

Fig. 4.
Fig. 4.

Unwrapped phase map for the transient event with a 60 ms time delay and a marble as inhomogeneity.

Fig. 5.
Fig. 5.

Line through central portion of the phase maps with and without inhomogeneity, for a transient pulse at 60 ms.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( x H , y H ) = R ( x H , y H ) 2 + U ( x H , y H ) 2
+ R ( x H , y H ) U * ( x H , y H )
+ R * ( x H , y H ) U ( x H , y H )

Metrics