Abstract

We have investigated spectral distribution and walk-off effect of second-harmonic generation in a 3-mm-long type I BiB3O6 crystal. Linearly turning ability of the BiB3O6 crystal is confirmed for wavelengths around 800 nm. In addition, the walk-off effect of fundamental beams is quantitatively measured by introducing a little vertical polarization component into pumping fundamental pulses. A conversion efficiency of 28% from fundamental to second harmonic is achieved at a 3.2-GW/cm2 fundamental intensity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Hellwig, J. Liebertz, and L. Bohaty, �??Linear optical properties of the monoclinic bismuth borate BiB3O6,�?? J. Appl. Phys. 88, 240-244 (2000).
    [CrossRef]
  2. C. Czeranowsky, E. Heumann, and G. Huber, �??All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8 W output power at 473nm,�?? Opt. Lett. 28, 432-434 (2003).
    [CrossRef] [PubMed]
  3. C. Du, Z. Wang, J. Liu, X. Xu, B. Teng, K. Fu, J. Wang, Y. Liu, and Z. Shao, �??Efficient intracavity second-harmonic generation at 1.06 mm in a BiB3O6 (BIBO) crystal,�?? Appl. Phys. B 73, 215-217 (2001).
    [CrossRef]
  4. Z. Wang, B. Teng, K. Fu, X. Xu, R. Song, C. Du, H. Jiang, J. Wang, Y. Liu, Z. Shao, �??Efficient second harmonic generation of pulsed laser radiation in BiB3O6 (BIBO) crystal with different phase matching directions,�?? Opt. Commun. 202, 217-220 (2002).
    [CrossRef]
  5. J. Yao, W. Sheng, and W. Shi, �??Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,�?? J. Opt. Soc. Am. B 9, 891-902 (1992).
    [CrossRef]

Appl. Phys. B (1)

C. Du, Z. Wang, J. Liu, X. Xu, B. Teng, K. Fu, J. Wang, Y. Liu, and Z. Shao, �??Efficient intracavity second-harmonic generation at 1.06 mm in a BiB3O6 (BIBO) crystal,�?? Appl. Phys. B 73, 215-217 (2001).
[CrossRef]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, �??Linear optical properties of the monoclinic bismuth borate BiB3O6,�?? J. Appl. Phys. 88, 240-244 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Yao, W. Sheng, and W. Shi, �??Accurate calculation of the optimum phase-matching parameters in three-wave interactions with biaxial nonlinear-optical crystals,�?? J. Opt. Soc. Am. B 9, 891-902 (1992).
[CrossRef]

Opt. Commun. (1)

Z. Wang, B. Teng, K. Fu, X. Xu, R. Song, C. Du, H. Jiang, J. Wang, Y. Liu, Z. Shao, �??Efficient second harmonic generation of pulsed laser radiation in BiB3O6 (BIBO) crystal with different phase matching directions,�?? Opt. Commun. 202, 217-220 (2002).
[CrossRef]

Opt. Lett. (1)

C. Czeranowsky, E. Heumann, and G. Huber, �??All-solid-state continuous-wave frequency-doubled Nd:YAG-BiBO laser with 2.8 W output power at 473nm,�?? Opt. Lett. 28, 432-434 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental schematic for SHG in a type I BIBO crystal. 1ω and 2ω denote fundamental and SH pulses, respectively.

Fig. 2.
Fig. 2.

Spectral properties of SHG in a 3-mm-long type I BIBO crystal. (a) SH intensity; (b) SH wavelength; (c) SH bandwidth; (d) Spectral distributions of fundamental (1ω) and SH (2ω) pulses.

Fig. 3.
Fig. 3.

Dependence of (a) SH intensity and (b) bandwidth on the fundamental peak intensity incident to the BIBO crystal.

Fig. 4.
Fig. 4.

Spatial patterns of (a) input fundamental, (b) residual fundamental, and (c) SH beams. X and Y denote the x- and y-direction axes of the patterns, respectively.

Fig. 5.
Fig. 5.

Conversion efficiency of SH pulse as a function of the input fundamental peak intensity.

Fig. 6.
Fig. 6.

Calculated temporal profile of the SH pulse under the experimental conditions.

Metrics