Abstract

Besides coherence degradations, supercontinuum spectra generated in birefringent photonic crystal fibers also suffer from polarization fluctuations because of noise in the input pump pulse. This paper describes an experimental study of polarization properties of supercontinuum spectra generated in a birefringent photonic crystal fiber, validating previous numerical simulations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
    [CrossRef]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
    [CrossRef]
  3. R. Holzwarth, T. Udem, T. W. H¨ansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
    [CrossRef] [PubMed]
  4. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  5. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002).
    [CrossRef]
  6. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O�??Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174�??1176 (2002).
    [CrossRef]
  7. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  8. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753�??764 (2002).
    [CrossRef]
  9. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180�??1182 (2002).
    [CrossRef]
  10. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
    [CrossRef] [PubMed]
  11. N. R. Newbury, B. R.Washburn, K. L. Corwin, and R. S.Windeler, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944�??946 (2003).
    [CrossRef] [PubMed]
  12. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Cohen, and R. S. Windeler, �??Experimental studies of the coherence of microstructure-fiber supercontinuum,�?? Opt. Express 11, 2697�??2703 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697</a>.
    [CrossRef] [PubMed]
  13. Z. Zhu and T. G. Brown, �??Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,�?? J. Opt. Soc. Am. B 21, 249�??257 (2004).
    [CrossRef]
  14. Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers,�?? Opt. Express 10, 853�??864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a>.
    [CrossRef] [PubMed]

J. Opt. Soc. Am. B

S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753�??764 (2002).
[CrossRef]

Z. Zhu and T. G. Brown, �??Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,�?? J. Opt. Soc. Am. B 21, 249�??257 (2004).
[CrossRef]

Opt. Express

Z. Zhu and T. G. Brown, �??Full-vectorial finite-difference analysis of microstructured optical fibers,�?? Opt. Express 10, 853�??864 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-853</a>.
[CrossRef] [PubMed]

X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Cohen, and R. S. Windeler, �??Experimental studies of the coherence of microstructure-fiber supercontinuum,�?? Opt. Express 11, 2697�??2703 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2697</a>.
[CrossRef] [PubMed]

Opt. Lett.

N. R. Newbury, B. R.Washburn, K. L. Corwin, and R. S.Windeler, �??Noise amplification during supercontinuum generation in microstructure fiber,�?? Opt. Lett. 28, 944�??946 (2003).
[CrossRef] [PubMed]

J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180�??1182 (2002).
[CrossRef]

A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002).
[CrossRef]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O�??Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, �??Frequencyresolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,�?? Opt. Lett. 27, 1174�??1176 (2002).
[CrossRef]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
[CrossRef]

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. H¨ansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113904 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated (a) GVD and Aeff , and (b) birefringence of the PCF. Inset of (b) shows the SEM image of the PCF.

Fig. 2.
Fig. 2.

Experiment setup. TSL: Ti:sapphire laser, IS: Isolator, P1,P2: Prism pair, M1~M3: Mirrors, H1~H3: Half-wave plates, A1,A2: Polarizers, FM: Flip mirror, PM: Power meter, AC: Autocorrelator, PCF: Photonic crystal fiber, L1,L2:Microscope objectives, Q: Quarter-wave plate, OSA: Optical spectrum analyzer.

Fig. 3.
Fig. 3.

SC generated with input pulses of different powers: (a) mean spectrum, (b) mean ellipticity and (c) polarization correlation. The power values shown in (a) are the average input powers just before the objective L1. λ 0=800 nm, pulse FWHM ~120 fs. The input pulses are linearly polarized at θ=45° to the slow axis of the PCF. In (a) black (red) lines indicate slow (fast) axis components. The bottom row of the figure plots the numerical simulation results for the 300mW-input case, assuming a coupling efficiency of 40% into the PCF, pulse width FWHM=120 fs and quantum noise in input pulses.

Fig. 4.
Fig. 4.

SC generated with input pulses of different central wavelengths: (a) mean spectrum, (b) mean ellipticity and (c) polarization correlation. The input pulses are linearly polarized at θ=45° to the slow axis of the PCF. The average input power just before the objective L1 is 150 mW. In (a) black (red) lines indicate slow (fast) axis components.

Fig. 5.
Fig. 5.

SC generated with input pulses polarized at different angles to the slow axis of the fiber: (a) mean spectrum, (b) mean ellipticity and (c) polarization correlation. λ 0=800 nm. The average input power just before the objective L1 is 200 mW. In (a) black (red) lines indicate slow (fast) axis components.

Tables (1)

Tables Icon

Table 1. Quantities measured in the experiment

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

e p ( λ ) = 2 Im ( E x * ( λ ) E y ( λ ) ) E x ( λ ) 2 + E y ( λ ) 2 = I 4 I 5 I 4 + I 5 ,
ρ ( λ ) = E x ( λ ) E y * ( λ ) [ E x ( λ ) 2 E y ( λ ) 2 ] 1 2 = { [ I 3 ( I 4 + I 5 ) 2 ] 2 + ( I 4 I 5 ) 2 4 I 1 I 2 } 1 2 .

Metrics