Abstract

We present the first experimental demonstration of a bi-directional cascaded arrayed-waveguide grating (AWG) access network combining one N×N AWG in the central office with multiple 1×N AWG’s at the distribution points, such as to individually address N 2 users with only N wavelengths. Downstream and upstream data share the same optical path. BER curves were measured using 2.5Gb/s data stream in each direction, and error free transmission achieved for downstream and upstream, with only 0.3dB power penalty for simultaneous transmission. The addition of two orthogonal polarization-multiplexed channels per wavelength doubled the number of possible end users. Error free transmission was achieved with simultaneous upstream and downstream transmission of a composite signal featuring eight 2.5Gb/s channels (2 polarizations ×4 wavelengths).

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. C. Parker, F. Farjady, S. D. Walker, �??Wavelength-tolerant optical access architectures featuring Ndimensional addressing and cascaded arrayed-waveguide gratings,�?? J. Lightwave Techol. 16, 2296-2301 (1998)
    [CrossRef]
  2. M. C. Parker, S. D. Walker, �??Design of arrayed-waveguide gratings using Hybrid Fourier-Fresnel transform techniques,�?? J. Sel. Quantum Electron. 5, 1379-1384 (1999)
    [CrossRef]
  3. G. Maier, M. Martinelli, A. Pattavina, E, Salvadori, �??Design and Cost Performance of the Multistage WDM-PON Access Networks,�?? J. Lightwave Technol. 18, 125-143 (2000).
    [CrossRef]
  4. K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamato, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, M. Matsuoka, �??32 x 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform loss cyclic-frequency arrayed-waveguide grating,�?? Electron. Lett. 36, 1294-1296 (2000)
    [CrossRef]
  5. I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, �??Polarization orthogonality preservation in DWDM cascaded arrayed-waveguide grating networks,�?? MF89, OFC�??04 (2004).
  6. I. Tsalamanis, E. Rochat, S. Dudley, S. D. Walker, M. C. Parker, D. M. Holburn, �??Demonstration of 100% capacity increase in a polarization-multiplexed cascaded arrayed-waveguide gratings access network,�?? paper We4 P.152, ECOC�??03 (2003)
  7. P. M. Hill, R. Olshansky, K. Burns, �??Optical polarization division multiplexing at 4Gb/s,�?? IEEE Photon. Tech. Lett. 4, 500-502 (1992)
    [CrossRef]
  8. E. Rochat, S. D. Walker, M. C. Parker, T. Boord, �??A 2.5Gb/s combined wavelength and polarization multiplexing transmission experiment over standard 50µm multimode fiber,�?? paper Th.2.7.4, ECOC�??03 (2003)

ECOC (2)

I. Tsalamanis, E. Rochat, S. Dudley, S. D. Walker, M. C. Parker, D. M. Holburn, �??Demonstration of 100% capacity increase in a polarization-multiplexed cascaded arrayed-waveguide gratings access network,�?? paper We4 P.152, ECOC�??03 (2003)

E. Rochat, S. D. Walker, M. C. Parker, T. Boord, �??A 2.5Gb/s combined wavelength and polarization multiplexing transmission experiment over standard 50µm multimode fiber,�?? paper Th.2.7.4, ECOC�??03 (2003)

Electron. Lett. (1)

K. Kato, A. Okada, Y. Sakai, K. Noguchi, T. Sakamato, S. Suzuki, A. Takahara, S. Kamei, A. Kaneko, M. Matsuoka, �??32 x 32 full-mesh (1024 path) wavelength-routing WDM network based on uniform loss cyclic-frequency arrayed-waveguide grating,�?? Electron. Lett. 36, 1294-1296 (2000)
[CrossRef]

IEEE Photon. Tech. Lett. (1)

P. M. Hill, R. Olshansky, K. Burns, �??Optical polarization division multiplexing at 4Gb/s,�?? IEEE Photon. Tech. Lett. 4, 500-502 (1992)
[CrossRef]

J. Lightwave Technol. (1)

G. Maier, M. Martinelli, A. Pattavina, E, Salvadori, �??Design and Cost Performance of the Multistage WDM-PON Access Networks,�?? J. Lightwave Technol. 18, 125-143 (2000).
[CrossRef]

J. Lightwave Techol. (1)

M. C. Parker, F. Farjady, S. D. Walker, �??Wavelength-tolerant optical access architectures featuring Ndimensional addressing and cascaded arrayed-waveguide gratings,�?? J. Lightwave Techol. 16, 2296-2301 (1998)
[CrossRef]

J. Sel. Quantum Electron (1)

M. C. Parker, S. D. Walker, �??Design of arrayed-waveguide gratings using Hybrid Fourier-Fresnel transform techniques,�?? J. Sel. Quantum Electron. 5, 1379-1384 (1999)
[CrossRef]

MF89 (1)

I. Tsalamanis, E. Rochat, S. D. Walker, M. C. Parker, �??Polarization orthogonality preservation in DWDM cascaded arrayed-waveguide grating networks,�?? MF89, OFC�??04 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cascaded AWG access network architecture featuring N×N AWG in the exchange point and 1×N AWG’s in the distribution points.

Fig. 2.
Fig. 2.

Typical eye diagrams (top: downstream; bottom: upstream) for simultaneous and bidirectional 2.5Gb/s data transmission at (a) 1542.1nm (b) 1550.1nm (c) 1553.3nm.

Fig. 3.
Fig. 3.

Typical BER curves at 1542.1 for a 2.5Gb/s, 27-1 PRBS data channel showing downstream (back-to-back, with and without upstream data) and upstream measurements (back-to-back, with and without downstream data).

Fig. 4.
Fig. 4.

Polarization multiplexing network architecture featuring wavelengths that carry two orthogonal polarizations. Two different ONU architectures presented (a) ONU for use with PWDM source, (b) stand-alone ONU.

Fig. 5.
Fig. 5.

Typical eye diagrams for simultaneous and bi-directional transmission of 1546.1nm wavelength. Downstream/Upstream eye diagrams for (a) λ1A (b) λ1B

Fig. 6.
Fig. 6.

Typical downstream and upstream BER curves for two orthogonal channels

Metrics