Abstract

The monomode enhanced-index LiNbO3 waveguide excited at 1540 nm is reported. X-cut LiNbO3 crystals were implanted at room temperature by 6.0 MeV C3+ ions with a dose of 2.0×1015 ions/cm2. Low loss planar optical waveguides were obtained and characterized by the prism coupling technique. Four dark modes were observed for extraordinary light at 633 nm, while only one enhanced-index mode was observed at 1540 nm. The propagation loss of the waveguide is 1.01 dB/cm measured with the moving fiber method. Reflectivity calculation method (RCM) was applied to simulate the refractive index profiles in waveguide. The width of waveguide structure induced by carbon ion implantation is ~3.6 µm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Osamu Mitomi, Kazuto Noguchi, Hiroshi Miyazawa, �??Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,�?? IEEE Transactions on Microwave Theory and Techniques 43, 2203-2207 (1995).
    [CrossRef]
  2. A. L. Campillo, J. W. P. Hsu, C. A. White, C. D. W. Jones, �??Direct measurement of the guided modes in LiNbO3 waveguides,�??Appl. Phys. Lett. 80, 2239-2241 (2002).
    [CrossRef]
  3. Eli Arad, Shlomo Ruschin, and David Nir, �??Buried modes in combined Ti diffused and Li outdiffused LiNbO3 slab waveguides,�?? Appt. Phys. Lett. 62, 2194-2916 (1993).
    [CrossRef]
  4. B. Herreros and G. Lifante, �??LiNbO3 optical waveguides by Zn diffusion from vapor phase,�?? Appl. Phys. Lett. 66, 1449-1451 (1995).
    [CrossRef]
  5. N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, �??Proton-exchanged waveguides in MgO-doped LiNbO3 : Optical and structural properties,�?? J. Appl. Phys. 94, 1163-1170 (2003).
    [CrossRef]
  6. S. S. Sarkisov, E. K. Williams, D. Ila, P. Venkateswarlu, and D. B. Poker, �??Vanishing optical isolation barrier in double ion-implanted lithium niobate waveguide,�?? Appl. Phys. Lett. 68, 2329-2331 (1996).
    [CrossRef]
  7. G. V. Vázquez, P. D. Townsend, �??Improvements of ion implanted waveguides in Nd:YAG and LiNbO3 using pulsed laser anneals,�?? Nucl. Instr. Meth. B 191, 110-114 (2002).
    [CrossRef]
  8. H. Hu, F. Chen, F. Lu, J. Zhang, J. Liu, K.-M. Wang, B.-R. Shi, D. Shen, X. Wang, �??Optical waveguide formation in LiNbO3 by 2.6 MeV Nickel Ions Implantation,�?? Chin. Phys. Lett. 18, 242-244 (2001).
    [CrossRef]
  9. D.-L. Zhang, E. Y. B. Pun, �??Accurate measurement of 1.5 µm of Er3+ in LiNbO3 crystals and waveguides,�?? J. Appl. Phys. 94, 1339-1345 (2003).
    [CrossRef]
  10. P. J. Chandler, F.L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-142 (1986).
    [CrossRef]
  11. P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (CUP, 1994).
  12. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, and M. Bazzan, R. Guzzi, �??Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3 : Planar optical waveguide formation and characterization,�?? J. Appl. Phys. 92, 6477-6483 (2002).
    [CrossRef]

Appl. Phys. Lett.

A. L. Campillo, J. W. P. Hsu, C. A. White, C. D. W. Jones, �??Direct measurement of the guided modes in LiNbO3 waveguides,�??Appl. Phys. Lett. 80, 2239-2241 (2002).
[CrossRef]

B. Herreros and G. Lifante, �??LiNbO3 optical waveguides by Zn diffusion from vapor phase,�?? Appl. Phys. Lett. 66, 1449-1451 (1995).
[CrossRef]

S. S. Sarkisov, E. K. Williams, D. Ila, P. Venkateswarlu, and D. B. Poker, �??Vanishing optical isolation barrier in double ion-implanted lithium niobate waveguide,�?? Appl. Phys. Lett. 68, 2329-2331 (1996).
[CrossRef]

Appt. Phys. Lett.

Eli Arad, Shlomo Ruschin, and David Nir, �??Buried modes in combined Ti diffused and Li outdiffused LiNbO3 slab waveguides,�?? Appt. Phys. Lett. 62, 2194-2916 (1993).
[CrossRef]

Chin. Phys. Lett.

H. Hu, F. Chen, F. Lu, J. Zhang, J. Liu, K.-M. Wang, B.-R. Shi, D. Shen, X. Wang, �??Optical waveguide formation in LiNbO3 by 2.6 MeV Nickel Ions Implantation,�?? Chin. Phys. Lett. 18, 242-244 (2001).
[CrossRef]

IEEE Transactions on Microwave Theory an

Osamu Mitomi, Kazuto Noguchi, Hiroshi Miyazawa, �??Design of ultra-broad-band LiNbO3 optical modulators with ridge structure,�?? IEEE Transactions on Microwave Theory and Techniques 43, 2203-2207 (1995).
[CrossRef]

J. Appl. Phys

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, and M. Bazzan, R. Guzzi, �??Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3 : Planar optical waveguide formation and characterization,�?? J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

J. Appl. Phys.

D.-L. Zhang, E. Y. B. Pun, �??Accurate measurement of 1.5 µm of Er3+ in LiNbO3 crystals and waveguides,�?? J. Appl. Phys. 94, 1339-1345 (2003).
[CrossRef]

N. Alkaev, C. Sada, N. Argiolas, and M. Bazzan, �??Proton-exchanged waveguides in MgO-doped LiNbO3 : Optical and structural properties,�?? J. Appl. Phys. 94, 1163-1170 (2003).
[CrossRef]

Nucl. Instr. Meth. B

G. V. Vázquez, P. D. Townsend, �??Improvements of ion implanted waveguides in Nd:YAG and LiNbO3 using pulsed laser anneals,�?? Nucl. Instr. Meth. B 191, 110-114 (2002).
[CrossRef]

Opt. Acta

P. J. Chandler, F.L. Lama, �??A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,�?? Opt. Acta 33, 127-142 (1986).
[CrossRef]

Other

P. D. Townsend, P. J. Chandler, L. Zhang, Optical Effects of Ion Implantation (CUP, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Measured relative intensity of the light (TE polarized) reflected from the prism versus the extraordinary effective refractive index (ne) of the incident light with the length of (a) 1540 nm and (b) 633 nm for the LiNbO3 waveguide formed by 6.0 MeV carbon ion implantation at a dose of 2×1015 ions/cm2 at room temperature.

Fig. 2.
Fig. 2.

Reconstructed refractive index profile of LiNbO3 waveguide. The measured mode indices (at 633 nm) are also given.

Fig. 3.
Fig. 3.

Energy loss of 6.0 MeV C ion implantation into LiNbO3 due to electronic excitation (dE/dx)el and nuclear collision (dE/dx)n as a function of penetration depth based on TRIM’98.

Fig. 4.
Fig. 4.

Light (633 nm) propagating through the waveguide

Fig. 5.
Fig. 5.

Loss measurement of the waveguide formed by the implantation of 6.0 MeV C with dose of 2×1015 ions/cm2, annealed at 260 °C for 20 min and then 290 °C for 20 min in air.

Tables (1)

Tables Icon

Table 1. Comparison of measured and calculated effective refractive indices (ne) for LiNbO3 waveguide formed by 6.0 MeV carbon ion implantation with a dose of 2×1015 ions/cm2.

Metrics