Abstract

We experimentally demonstrate mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers. Depending on the waveguide mode excited in the fiber, 30-fs Ti: sapphire laser pulses can either generate a broadband emission or produce isolated spectral components in the spectrum of output radiation. This method is used to tune the frequencies dominating the output spectra, controlled by phase matching for four-wave mixing processes.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Frequency-tunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier

Andrei B. Fedotov, Aleksandr N. Naumov, Aleksei M. Zheltikov, Ignac Bugar, Dusan Chorvat, Dusan Chorvat, Alexander P. Tarasevitch, and Dietrich von der Linde
J. Opt. Soc. Am. B 19(9) 2156-2164 (2002)

Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation

Stas O. Konorov and Aleksei M. Zheltikov
Opt. Express 11(19) 2440-2445 (2003)

Efficient anti-Stokes generation through phase-matched four-wave mixing in higher-order modes of a microstructure fiber

D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Yu. N. Kondrat’ev
Opt. Lett. 28(20) 1948-1950 (2003)

References

  • View by:
  • |
  • |
  • |

  1. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
    [Crossref] [PubMed]
  2. P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  3. Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B19, no. 9 (2002).
  4. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
    [Crossref] [PubMed]
  5. N.G.R. Broderick, T.M. Bennett, P.J. Monro, and D.J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [Crossref]
  6. A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
    [Crossref]
  7. J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  8. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
    [Crossref]
  9. Supercontinuum Generation, Special issue of Applied Physics B, 77, nos. 2/3 (2003).
  10. A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel’nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, “Enhanced χ(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2183–2191 (2002).
    [Crossref]
  11. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567
    [Crossref] [PubMed]
  12. A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
    [Crossref]
  13. A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910–918 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.
    [Crossref] [PubMed]
  14. D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
    [Crossref] [PubMed]
  15. S. O. Konorov and A. M. Zheltikov, “Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation,” Opt. Express 11, 2440–2445 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440
    [Crossref] [PubMed]
  16. A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
    [Crossref]
  17. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
    [Crossref]
  18. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
    [Crossref]
  19. E.E. Serebryannikov and A.M. Zheltikov, “Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,” Laser Phys. 13, 1339–1345 (2003).
  20. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.,  26, 488–450 (2001).
    [Crossref]
  21. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [Crossref] [PubMed]
  22. S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
    [Crossref]
  23. B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575
    [Crossref] [PubMed]
  24. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
    [Crossref]

2003 (8)

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567
[Crossref] [PubMed]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910–918 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.
[Crossref] [PubMed]

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

S. O. Konorov and A. M. Zheltikov, “Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation,” Opt. Express 11, 2440–2445 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440
[Crossref] [PubMed]

E.E. Serebryannikov and A.M. Zheltikov, “Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,” Laser Phys. 13, 1339–1345 (2003).

2002 (7)

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” J. Opt. Soc. Am. B 19, 2148–2155 (2002).
[Crossref]

A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel’nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, “Enhanced χ(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2183–2191 (2002).
[Crossref]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,” J. Opt. Soc. Am. B 19, 753–764 (2002).
[Crossref]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, “Ultrashort pulse propagation in air-silica microstructure fiber,” Opt. Express 10, 575–580 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575
[Crossref] [PubMed]

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” J. Opt. Soc. Am. B 19, 765–771 (2002).
[Crossref]

2001 (2)

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, “Symmetry and degeneracy in microstructured optical fibers,” Opt. Lett.,  26, 488–450 (2001).
[Crossref]

2000 (2)

J.K. Ranka, R.S. Windeler, and A.J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

1999 (2)

N.G.R. Broderick, T.M. Bennett, P.J. Monro, and D.J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

1998 (1)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

Akimov, D.A.

Beloglazov, V.I.

Bennet, P.J.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

Bennett, T.M.

Biancalana, F.

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Birks, T.A.

Botten, L.C.

Broderick, N.G.R.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

N.G.R. Broderick, T.M. Bennett, P.J. Monro, and D.J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[Crossref]

Broeng, J.

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

Bugar, I.

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

Chorvat, D.

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

Coen, S.

Dudley, J. M.

Dukel’skii, K.V.

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Efimov, A.

Eggleton, B. J.

Fedotov, A.B.

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel’nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, “Enhanced χ(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2183–2191 (2002).
[Crossref]

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Grossard, N.

Harvey, J.D.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Hing Lun Chau, A.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Kiefer, W.

Knight, J. C.

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Knight, J.C.

Kondrat’ev, Yu.N.

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Konorov, S. O.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Leonhardt, R.

Maillotte, H.

Maksimenka, R.

Mann, T.P.M.

Martijn de Sterke, C.

McPhedran, R.C.

Mel’nikov, L.A.

Monro, P.J.

Monro, T.M.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

Naumov, A.N.

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Omenetto, F. G.

Omenetto, F.G.

A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910–918 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.
[Crossref] [PubMed]

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Ortigosa-Blanch, A.

Provino, L.

Ralph, S. E.

Ranka, J.K.

Reeves, W.H.

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Richardson, D.J.

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

N.G.R. Broderick, T.M. Bennett, P.J. Monro, and D.J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

Russell, P. S. J.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Russell, P.St.J.

Scalora, M.

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

Schmitt, M.

Serebryannikov, E.E.

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

E.E. Serebryannikov and A.M. Zheltikov, “Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,” Laser Phys. 13, 1339–1345 (2003).

Shcherbakov, A.V.

Shevandin, V.S.

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Sidorov-Biryukov, D.A.

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

Skibina, N.B.

Skryabin, D.V.

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Smirnov, V.B.

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Steel, M.J.

Stentz, A.J.

Tarasevitch, A.P.

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

Taylor, A. J.

Taylor, A.J.

A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, “Nonlinear generation of very high-order UV modes in microstructured fibers,” Opt. Express 11, 910–918 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910.
[Crossref] [PubMed]

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

von der Linde, D.

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

Wadsworth, W. J.

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express 11, 2567–2576 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Wadsworth, W.J.

Washburn, B. R.

White, T.P.

Windeler, R. S.

Windeler, R.S.

Yakovlev, V.V.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Zheltikov, A. M.

Zheltikov, A.M.

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel’skii, V.S. Shevandin, and Yu.N. Kondrat’ev, “Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,” Opt. Lett. 28, 1948–1950 (2003).
[Crossref] [PubMed]

E.E. Serebryannikov and A.M. Zheltikov, “Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,” Laser Phys. 13, 1339–1345 (2003).

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel’nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, “Enhanced χ(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2183–2191 (2002).
[Crossref]

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

Zhou, Ping

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Appl. Phys. B (2)

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
[Crossref]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat, M. Scalora, D. Chorvat, and A.M. Zheltikov, “Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,” Appl. Phys. B 77, 313–319 (2003).
[Crossref]

J. Lightwave Tech. (2)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Holey optical fibers: An efficient modal model,” J. Lightwave Tech. 17, 1093–1102, (1999).
[Crossref]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, “Modelling large air fraction holey optical fibers,” J. Lightwave Tech. 18, 50–56, (2000).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Raman Spectrosc. (1)

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel’skii, Yu.N. Kondrat’ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, “Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,” J. Raman Spectrosc. 33, 888–896 (2002).
[Crossref]

Laser Phys. (1)

E.E. Serebryannikov and A.M. Zheltikov, “Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,” Laser Phys. 13, 1339–1345 (2003).

Nature (1)

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Science (2)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
[Crossref] [PubMed]

P.St.J. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Other (2)

Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B19, no. 9 (2002).

Supercontinuum Generation, Special issue of Applied Physics B, 77, nos. 2/3 (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-section images of a microstructure fiber: (a) the general view of the microstructure part of the fiber in the outer shell, (b) the central, microstructure part of the fiber.

Fig. 2.
Fig. 2.

Intensity distributions in (a) the fundamental and (b, c) a degenerate doublet of higher order modes of the microstructure fiber shown in Fig. 1. Superposition of the degenerate doublet of modes (b, c) yields an HE21-mode-type intensity distribution (d). The fiber core diameter is 4.5 µm. The radiation wavelength is 570 nm.

Fig. 3.
Fig. 3.

Propagation constant β normalized to the wave number k=ω/c (ω is the frequency and c is the speed of light) as a function of dimensionless frequency ka (a is the diameter of holes in the fiber cladding) for the fundamental (blue curve) and higher order (red, green, navy, yellow, and pink) guided modes of the microstructure fiber shown in Fig. 1. The insets show intensity profiles for the fundamental (blue) and higher order (red, green, navy, yellow, and pink) guided modes in the microstructure fiber. The fiber core diameter is 4.5 µm.

Fig. 4.
Fig. 4.

Mismatch of propagation constants δβ of higher order waveguide modes involved in the FWM process 2ωp =ωs +ωa in a fused silica MS fiber with a core diameter of 4.5 µm. The pump wavelength is 800 nm. The inset shows the group-velocity dispersion (GVD) calculated for the fundamental (dashed line 1) and higher order (solid line 2) guided mode of the microstructure fiber.

Fig. 5.
Fig. 5.

The spectra of Ti: sapphire laser pulse with an initial pulse duration of 30 fs transmitted through a 6-cm section of the microstructure fiber in (a) the fundamental and (b, c) higher order waveguide modes. The input pulse energy is (a) 100 nJ and (b) 100 nJ (solid line) and 200 nJ (dashed line). The insets show the images of the output end of the fiber.

Metrics