Abstract

We experimentally demonstrate mode-controlled spectral transformation of femtosecond laser pulses in microstructure fibers. Depending on the waveguide mode excited in the fiber, 30-fs Ti: sapphire laser pulses can either generate a broadband emission or produce isolated spectral components in the spectrum of output radiation. This method is used to tune the frequencies dominating the output spectra, controlled by phase matching for four-wave mixing processes.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic bandgap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  2. P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  3. Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B 19, no. 9 (2002).
  4. W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, �??Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,�?? Nature 424, 511-515 (2003).
    [CrossRef] [PubMed]
  5. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearity in holey optical fibers: measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999).
    [CrossRef]
  6. A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, �??Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,�?? Appl. Phys. B 73, 181-184 (2001).
    [CrossRef]
  7. J.K. Ranka, R.S. Windeler, and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  8. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
    [CrossRef]
  9. Supercontinuum Generation, Special issue of Applied Physics B, 77, nos. 2/3 (2003).
  10. A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel'nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, �??Enhanced x(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2183-2191 (2002).
    [CrossRef]
  11. A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567</a>
    [CrossRef] [PubMed]
  12. A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat Jr., M. Scalora, D. Chorvat, A.M. Zheltikov, �??Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,�?? Appl. Phys. B 77, 313-319 (2003).
    [CrossRef]
  13. A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Nonlinear generation of very high-order UV modes in microstructured fibers,�?? Opt. Express 11, 910-918 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910</a>
    [CrossRef] [PubMed]
  14. D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel'skii, V.S. Shevandin, and Yu.N. Kondrat'ev, �??Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,�?? Opt. Lett. 28, 1948-1950 (2003).
    [CrossRef] [PubMed]
  15. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440</a>
    [CrossRef] [PubMed]
  16. A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel�??skii, Yu.N. Kondrat�??ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, �??Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,�?? J. Raman Spectrosc. 33, 888-896 (2002).
    [CrossRef]
  17. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, "Holey optical fibers: An efficient modal model," J. Lightwave Tech. 17, 1093-1102, (1999).
    [CrossRef]
  18. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, " Modelling large air fraction holey optical fibers," J. Lightwave Tech. 18, 50-56, (2000).
  19. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett., 26, 488-450 (2001).
    [CrossRef]
  20. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  21. S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
    [CrossRef]
  22. B. R. Washburn, S. E. Ralph, and R. S. Windeler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>
    [CrossRef] [PubMed]
  23. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
    [CrossRef]
  24. E.E. Serebryannikov and A.M. Zheltikov, �??Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,�?? Laser Phys. 13, 1339-1345 (2003).

Appl. Phys. B (2)

A.B. Fedotov, A.M. Zheltikov, A.P. Tarasevitch, and D. von der Linde, �??Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,�?? Appl. Phys. B 73, 181-184 (2001).
[CrossRef]

A.B. Fedotov, I. Bugar, D.A. Sidorov-Biryukov, E.E. Serebryannikov, D. Chorvat Jr., M. Scalora, D. Chorvat, A.M. Zheltikov, �??Pump-depleting four-wave mixing in supercontinuum-generating microstructure fibers,�?? Appl. Phys. B 77, 313-319 (2003).
[CrossRef]

Applied Physics B (1)

Supercontinuum Generation, Special issue of Applied Physics B, 77, nos. 2/3 (2003).

J. Lightwave Tech. (2)

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, "Holey optical fibers: An efficient modal model," J. Lightwave Tech. 17, 1093-1102, (1999).
[CrossRef]

T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennet, " Modelling large air fraction holey optical fibers," J. Lightwave Tech. 18, 50-56, (2000).

J. Opt. Soc. Am B (2)

Nonlinear optics of photonic crystals, Feature issue of J. Opt. Soc. Am. B 19, no. 9 (2002).

J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B 19, 765-771 (2002).
[CrossRef]

J. Opt. Soc. Am. B (3)

S. Coen, A. Hing Lun Chau, R. Leonhardt, J.D. Harvey, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fibers,�?? J. Opt. Soc. Am. B 19, 753-764 (2002).
[CrossRef]

A.N. Naumov, A.B. Fedotov, A.M. Zheltikov, V.V. Yakovlev, L.A. Mel'nikov, V.I. Beloglazov, N.B. Skibina, and A.V. Shcherbakov, �??Enhanced x(3) interactions of unamplified femtosecond Cr: forsterite laser pulses in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2183-2191 (2002).
[CrossRef]

W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.P.M. Mann, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

A.B. Fedotov, Ping Zhou, A.P. Tarasevitch, K.V. Dukel�??skii, Yu.N. Kondrat�??ev, V.S. Shevandin, V.B. Smirnov, D. von der Linde, and A.M. Zheltikov, �??Microstructure-Fiber Sources of Mode-Separable Supercontinuum Emission for Wave-Mixing Spectroscopy,�?? J. Raman Spectrosc. 33, 888-896 (2002).
[CrossRef]

Laser Phys. (1)

E.E. Serebryannikov and A.M. Zheltikov, �??Tailoring Guided Modes of Minimal-Microstructure Fibers for Enhanced Nonlinear Optics and Evanescent-Field Sensing,�?? Laser Phys. 13, 1339-1345 (2003).

Nature (1)

W.H. Reeves, D.V. Skryabin, F. Biancalana, J.C. Knight, P.St.J. Russell, F.G. Omenetto, A. Efimov, and A.J. Taylor, �??Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,�?? Nature 424, 511-515 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

A. Efimov, A. J. Taylor, F. G. Omenetto, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11, 2567-2576 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2567</a>
[CrossRef] [PubMed]

S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003), <a href= " http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-19-2440</a>
[CrossRef] [PubMed]

A. Efimov, A.J. Taylor, F.G. Omenetto, J.C. Knight, W.J. Wadsworth, and P.St.J. Russell, �??Nonlinear generation of very high-order UV modes in microstructured fibers,�?? Opt. Express 11, 910-918 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-910</a>
[CrossRef] [PubMed]

B. R. Washburn, S. E. Ralph, and R. S. Windeler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-13-575</a>
[CrossRef] [PubMed]

Opt. Lett. (4)

D.A. Akimov, E.E. Serebryannikov, A.M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K.V. Dukel'skii, V.S. Shevandin, and Yu.N. Kondrat'ev, �??Efficient anti-Stokes generation through phase-matched four-wave mixing in higher order modes of a microstructure fiber,�?? Opt. Lett. 28, 1948-1950 (2003).
[CrossRef] [PubMed]

M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett., 26, 488-450 (2001).
[CrossRef]

J.K. Ranka, R.S. Windeler, and A.J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000).
[CrossRef]

N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearity in holey optical fibers: measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, G. Korn,�??Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

Science (2)

J.C. Knight, J. Broeng, T.A. Birks, and P.St.J. Russell, �??Photonic bandgap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

P.St.J. Russell, �??Photonic crystal fibers,�?? Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cross-section images of a microstructure fiber: (a) the general view of the microstructure part of the fiber in the outer shell, (b) the central, microstructure part of the fiber.

Fig. 2.
Fig. 2.

Intensity distributions in (a) the fundamental and (b, c) a degenerate doublet of higher order modes of the microstructure fiber shown in Fig. 1. Superposition of the degenerate doublet of modes (b, c) yields an HE21-mode-type intensity distribution (d). The fiber core diameter is 4.5 µm. The radiation wavelength is 570 nm.

Fig. 3.
Fig. 3.

Propagation constant β normalized to the wave number k=ω/c (ω is the frequency and c is the speed of light) as a function of dimensionless frequency ka (a is the diameter of holes in the fiber cladding) for the fundamental (blue curve) and higher order (red, green, navy, yellow, and pink) guided modes of the microstructure fiber shown in Fig. 1. The insets show intensity profiles for the fundamental (blue) and higher order (red, green, navy, yellow, and pink) guided modes in the microstructure fiber. The fiber core diameter is 4.5 µm.

Fig. 4.
Fig. 4.

Mismatch of propagation constants δβ of higher order waveguide modes involved in the FWM process 2ωp =ωs +ωa in a fused silica MS fiber with a core diameter of 4.5 µm. The pump wavelength is 800 nm. The inset shows the group-velocity dispersion (GVD) calculated for the fundamental (dashed line 1) and higher order (solid line 2) guided mode of the microstructure fiber.

Fig. 5.
Fig. 5.

The spectra of Ti: sapphire laser pulse with an initial pulse duration of 30 fs transmitted through a 6-cm section of the microstructure fiber in (a) the fundamental and (b, c) higher order waveguide modes. The input pulse energy is (a) 100 nJ and (b) 100 nJ (solid line) and 200 nJ (dashed line). The insets show the images of the output end of the fiber.

Metrics