Abstract

We will demonstrate a new technique to discriminate the temperature and strain effects using a single fiber Bragg grating (FBG). The birefringence is typically induced during FBG inscription, and it is manifested as polarization-dependent loss (PDL), and it is defined as the maximum change in the transmitted power for polarizations. Two independent measurements of the resonance wavelength shift and the changes of PDL can discriminate those effects.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Huang, M. LeBlanc, M. N. Ohn, and R. M. Measures, "Bragg intragrating structural sensing," Appl. Opt. 34, 5003-5009 (1995).
    [CrossRef] [PubMed]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  3. L. Dong, J.-L. Archambault, L. Reekie, P. St. J. Russell and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
    [CrossRef]
  4. M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, �??Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,�?? Electron. Lett. 30, 1085�??1087 (1994).
    [CrossRef]
  5. H. J. Patrick, G. M. Williams, A. D. Kersey, J. P. Pedrazzani, and A. M. Vengsarkar, �??Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,�?? IEEE Photon. Technol. Lett. 8, 1223�??1225 (1996).
    [CrossRef]
  6. M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, R. Yamauchi, �??Simultaneous Measurement of Temperature and Strain using PANDA Fiber Grating,�?? OFS 12, 170-173 (1997).
  7. P. M. Cavaleiro, F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, �??Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers,�?? IEEE Photon. Technol. Lett. 11, 1635-1637 (1999).
    [CrossRef]
  8. A. M. Vengsarkar, Q. Zhong, D. Inniss, W. A. Redd, P. J. Lemaire, and S. G. Kosinski, �??Birefringence reduction in side-written photiunduced fiber devices by a dual-exposure method,�?? Opt. Lett. 19, 1260-1262 (1994).
    [CrossRef] [PubMed]
  9. T. Erdogan and V. Mizrahi, �??Characterization of UV-induced birefringence in photosensitive Ge-doped silica optical fibers,�?? J. Opt. Soc. Am. B 11, 2100�??2105 (1994).
    [CrossRef]
  10. Y. Zhu, E. Simova, P. Berini and C. P. Grover, "A Comparison of Wavelength Dependent Polarization Dependent Loss Measurements in Fiber Gratings," IEEE Trans. Instrum. Meas. 49, 1231-1239 (2000).
    [CrossRef]
  11. T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  12. K. Dossou, S. LaRochelle, M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1470 (2002).
    [CrossRef]

Appl. Opt.

Electron. Lett.

L. Dong, J.-L. Archambault, L. Reekie, P. St. J. Russell and D. N. Payne, "Single pulse Bragg gratings written during fibre drawing," Electron. Lett. 29, 1577-1578 (1993).
[CrossRef]

M. G. Xu, J.-L. Archambault, L. Reekie, and J. P. Dakin, �??Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors,�?? Electron. Lett. 30, 1085�??1087 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

H. J. Patrick, G. M. Williams, A. D. Kersey, J. P. Pedrazzani, and A. M. Vengsarkar, �??Hybrid fiber Bragg grating/long period fiber grating sensor for strain/temperature discrimination,�?? IEEE Photon. Technol. Lett. 8, 1223�??1225 (1996).
[CrossRef]

P. M. Cavaleiro, F. M. Araújo, L. A. Ferreira, J. L. Santos, and F. Farahi, �??Simultaneous measurement of strain and temperature using Bragg gratings written in germanosilicate and boron-codoped germanosilicate fibers,�?? IEEE Photon. Technol. Lett. 11, 1635-1637 (1999).
[CrossRef]

IEEE Trans. Instrum. Meas.

Y. Zhu, E. Simova, P. Berini and C. P. Grover, "A Comparison of Wavelength Dependent Polarization Dependent Loss Measurements in Fiber Gratings," IEEE Trans. Instrum. Meas. 49, 1231-1239 (2000).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, �??Fiber grating spectra,�?? J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

K. Dossou, S. LaRochelle, M. Fontaine, "Numerical analysis of the contribution of the transverse asymmetry in the photo-induced index change profile to the birefringence of optical fiber," J. Lightwave Technol. 20, 1463-1470 (2002).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Atkins, M. A. Putnam, and E. J. Friebele, �??Fiber grating sensors,�?? J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

J. Opt. Soc. Am. B

OFS

M. Sudo, M. Nakai, K. Himeno, S. Suzaki, A. Wada, R. Yamauchi, �??Simultaneous Measurement of Temperature and Strain using PANDA Fiber Grating,�?? OFS 12, 170-173 (1997).

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Simulations of transmission spectra and PDL of FBG with the birefringence of 4×10-6, the grating period (Λ) of 530 nm, and the length (L) of 1 cm.

Fig. 2.
Fig. 2.

The experimental setup.

Fig. 3.
Fig. 3.

Transmission spectra and PDL of the FBG.

Fig. 4.
Fig. 4.

Shift of the transmission spectrum with application of strain.

Fig. 5.
Fig. 5.

Resonance wavelength shift and maximum PDL change with strain.

Fig. 6.
Fig. 6.

Resonance wavelength shift and maximum PDL change with temperature.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n co Λ
Δ λ B = λ B ( K T Δ T + K ε Δ ε )
Δ λ = 2 Δ n Λ ,
( Δ λ s Δ λ p ) = ( K sT K s ε K pT K p ε ) ( Δ T Δ ε )
PDL [ dB ] = 10 log 10 T max 10 log 10 T min = 10 log 10 ( P max P min ) ,
( Δ λ Δ k max ) = ( ( Δ λ s + Δ λ p ) 2 function ( Δ λ s Δ λ p ) ) = ( K 1 T K 1 ε K 2 T K 2 ε ) ( Δ T Δ ε )
λ B [ nm ] = 1537.4 + 11.1 ε [ % ] ,
k max [ dB ] = 8.47 + 38.6 ε [ % ] ,
λ B [ nm ] = 1537.0 + 0.011 T [ ° C ] ,
k max [ dB ] = 5.84 + 0.13 T [ ° C ] .
( T [ ° C ] ε [ % ] ) = ( 37.9 10.9 0.128 0.0108 ) ( λ B [ nm ] 1537.0 k max [ dB ] 5.84 ) .

Metrics