Abstract

We study numerically the counterpropagating vector solitons in SBN:60 photorefractive crystals. A simple theory is provided for explaining the symmetry-breaking transverse instability of these solitons. Phase diagram is produced that depicts the transition from stable counterpropagating solitons to bidirectional waveguides to unstable optical structures. Numerical simulations are performed that predict novel dynamical beam structures, such as the standing-wave and rotating multipole vector solitonic clusters. For larger coupling strengths and/or thicker crystals the beams form unstable self-trapped optical structures that have no counterparts in the copropagating geometry.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. For an overview see the Special Issue on solitons, Ed. M. Segev, Opt. Phot. News 13, No. 2 (2002).
  2. Y. S. Kivshar and D. E. Pelinovsky, "Self-focusing and transverse instabilities of solitary waves," Phys. Rep. 331, 117-195 (2000).
    [CrossRef]
  3. O. Cohen et al., "Spatial vector solitons consisting of counterpropagating fields," Opt. Lett. 27, 2013 (2002).
    [CrossRef]
  4. M. Beli�? et al., "Self-trapped bidirectional waveguides in a saturable photorefractive medium," Phys. Rev. A 68 025601, (2003).
  5. S. Trillo and W. Torruellas eds., Spatial Solitons (Springer, New York, 2001).
  6. M. Haelterman, A. P. Sheppard, and A. W. Snyder, "Bimodal counterpropagating spatial solitary-waves," Opt. Commun. 103, 145 (1993).
    [CrossRef]
  7. O. Cohen et al., "Collisions between optical spatial solitons propagating in opposite directions," Phys. Rev. Lett. 89, 133901 (2002); "Holographic solitons," Opt. Lett. 27, 2031 (2002).
    [CrossRef] [PubMed]
  8. L. Solymar, D. J. Webb, and A. Grunett-Jepsen, The physics and applications of photorefractive materials, (Clarendon Press, Oxford, 1996).
  9. M. Beli�? et al., "Anisotropic nonlocal modelling of counterpropagating photorefractive solitons," Opt. Lett. 29 xxxx (2004).
  10. M. Beli�?, A. Stepken, and F. Kaiser, "Spatial screening solitons as particles," Phys. Rev. Lett. 84, 83 (2000).
    [CrossRef]
  11. P. R. Holland, The quantum theory of motion, (University Press, Cambridge, 1995).
  12. O. Sandfuchs, F. Kaiser, and M. R. Beli�?, "Self-organization and Fourier selection of optical patterns in a photorefractive feedback system," Phys. Rev. A 64, 063809 (2001).
    [CrossRef]
  13. M. Beli�?, J. Leonardy, D. Timotijevi�?, and F. Kaiser, "Spatio-temporal effects in double phase conjugation," J. Opt. Soc. Am. B12, 1602 (1995).
  14. J. J. Garcia-Ripoll, et al., "Dipole-mode vector solitons," Phys. Rev. Lett. 85, 83 (2000); W. Krolikowski et al., "Observation of dipole-mode vector solitons," Phys. Rev.
    [CrossRef]
  15. K. Motzek et al., "Dynamic counterpropagating vector solitons in self-focusing media," Phys. Rev. E 68 06xxxx (2003).
    [CrossRef]
  16. M. R. Beli�? et al., "Isotropic vs. anisotropic modeling of photorefractive solitons," Phys. Rev. A 65, 066609 (2002).
  17. G. F. Calvo et al., "Two-dimensional soliton-induced space charge field in photorefractive crystals," Opt. Commun. 227, 193 (2003).
    [CrossRef]
  18. T. Carmon et al., "Rotating propeller solitons," Phys. Rev. Lett. 87, 143901 (2001).
    [CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

G. F. Calvo et al., "Two-dimensional soliton-induced space charge field in photorefractive crystals," Opt. Commun. 227, 193 (2003).
[CrossRef]

M. Haelterman, A. P. Sheppard, and A. W. Snyder, "Bimodal counterpropagating spatial solitary-waves," Opt. Commun. 103, 145 (1993).
[CrossRef]

Opt. Lett. (2)

M. Beli�? et al., "Anisotropic nonlocal modelling of counterpropagating photorefractive solitons," Opt. Lett. 29 xxxx (2004).

O. Cohen et al., "Spatial vector solitons consisting of counterpropagating fields," Opt. Lett. 27, 2013 (2002).
[CrossRef]

Opt. Phot. News (1)

For an overview see the Special Issue on solitons, Ed. M. Segev, Opt. Phot. News 13, No. 2 (2002).

Phys. Rep. (1)

Y. S. Kivshar and D. E. Pelinovsky, "Self-focusing and transverse instabilities of solitary waves," Phys. Rep. 331, 117-195 (2000).
[CrossRef]

Phys. Rev. A (3)

M. Beli�? et al., "Self-trapped bidirectional waveguides in a saturable photorefractive medium," Phys. Rev. A 68 025601, (2003).

M. R. Beli�? et al., "Isotropic vs. anisotropic modeling of photorefractive solitons," Phys. Rev. A 65, 066609 (2002).

O. Sandfuchs, F. Kaiser, and M. R. Beli�?, "Self-organization and Fourier selection of optical patterns in a photorefractive feedback system," Phys. Rev. A 64, 063809 (2001).
[CrossRef]

Phys. Rev. E (1)

K. Motzek et al., "Dynamic counterpropagating vector solitons in self-focusing media," Phys. Rev. E 68 06xxxx (2003).
[CrossRef]

Phys. Rev. Lett (1)

O. Cohen et al., "Collisions between optical spatial solitons propagating in opposite directions," Phys. Rev. Lett. 89, 133901 (2002); "Holographic solitons," Opt. Lett. 27, 2031 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

M. Beli�?, A. Stepken, and F. Kaiser, "Spatial screening solitons as particles," Phys. Rev. Lett. 84, 83 (2000).
[CrossRef]

J. J. Garcia-Ripoll, et al., "Dipole-mode vector solitons," Phys. Rev. Lett. 85, 83 (2000); W. Krolikowski et al., "Observation of dipole-mode vector solitons," Phys. Rev.
[CrossRef]

T. Carmon et al., "Rotating propeller solitons," Phys. Rev. Lett. 87, 143901 (2001).
[CrossRef] [PubMed]

Other (3)

P. R. Holland, The quantum theory of motion, (University Press, Cambridge, 1995).

L. Solymar, D. J. Webb, and A. Grunett-Jepsen, The physics and applications of photorefractive materials, (Clarendon Press, Oxford, 1996).

S. Trillo and W. Torruellas eds., Spatial Solitons (Springer, New York, 2001).

Supplementary Material (14)

» Media 1: MOV (726 KB)     
» Media 2: MOV (971 KB)     
» Media 3: MOV (1263 KB)     
» Media 4: MOV (1263 KB)     
» Media 5: MOV (1307 KB)     
» Media 6: MOV (1298 KB)     
» Media 7: MOV (1390 KB)     
» Media 8: MOV (1358 KB)     
» Media 9: MOV (1306 KB)     
» Media 10: MOV (1322 KB)     
» Media 11: MOV (1840 KB)     
» Media 12: MOV (2050 KB)     
» Media 13: MOV (1444 KB)     
» Media 14: MOV (1286 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Phase diagram in the parameter plane for the symmetry-breaking instabilities of bidirectional solitons in 1D. Below the lower curve CP solitons exist, above the curve stable bidirectional waveguides appear. The insets depict typical beam intensity distributions in the (x, z) plane at the points indicated. At and above the upper critical curve the waveguides loose stability. The points are numerically determined, the curves represent inverse power polynomial fits. L is measured in units of LD , while Γ is dimensionless.

Fig. 2.
Fig. 2.

Movies of Gaussian forward beam undergoing transverse displacement at Γ=9.2 and L=1.8. Beam size 15 µm FWHM. (a) The (x,y) plane (727 KB). (b) The (y,z) plane (971 KB).

Fig. 3.
Fig. 3.

Movies of stable interacting dipoles. (a)-(b) Parallel-parallel geometry. (c)–(d) Parallel-perpendicular geometry. (a) (1.263 MB) and (c) (1.307 MB) Output forward beams. (b) (1.263 MB) and (d) (1.298 MB) Output backward beams. Parameters: Γ=9.2, L=1.8, initial distance between dipole partners 24 µm, initial beam widths 10 µm FWHM.

Fig. 4.
Fig. 4.

Movies of standing multipole waves, as a result of collision of two identical vortices at Γ=19.1, for different values of L. Forward output beam is depicted, backward wave is mirror-image. Initial beam widths 24.5 µm FWHM. (a) L=0.8 (1.391MB), (b) L=1.1 (1.359 MB), (c) L=1.5 (1.307 MB).

Fig. 5.
Fig. 5.

Movies of stable rotating forward beam at the output face, resulting from the collision of two oppositely charged vortices. The backward beam executes a mirror-image rotation. (a) The (x,y) plane (1.322 MB). (b) The (y,z) plane (1.841 MB). Parameters as in Fig. 4 (a).

Fig. 6.
Fig. 6.

Movies of unstable outputs of vortex-vortex collisions, forward output beam. (a) The same beam as in Fig. 5, only L is larger, L=1.5 (2.050 MB). (b) The same beam as in (a), only wider, the initial beam width 30 µm FWHM (1.444 MB). (c) Unstable vortex beam for the parameter values: Γ=16.1, L=1.3, initial beam width 30 µm FWHM (1.286 MB).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

1 + I = ( 1 + I 0 ) [ 1 + ε m cos ( 2 kz + Δ ϕ ) ] ,
E = E 0 + 1 2 [ E 1 exp ( 2 ikz ) + cc ] ,
i z F = Δ F + Γ [ E 0 F + E 1 B 2 ] , i z B = Δ B + Γ [ E 0 B + E 1 * F 2 ] ,
τ t E 0 + E 0 = I 0 1 + I 0 , τ t E 1 + E 1 = ε m 1 + I 0 ,
x ( z ) = 1 I t + + x A ( x , y , z ) 2 dxdy , y ( z ) = 1 I t + + y A ( x , y , z ) 2 dxdy ,
d x dz = p x , d p x dz = V x ,
i ( d dz ) A = ( p 2 + V ) A ( ρ , z ) ,
( d dz ) 2 x = Γ E 0 x .
( d dz ) 2 d = ( d dz ) 2 ( d ρ d 0 ρ 0 ) = Γ ( d E 0 d 0 E 0 0 ) .
( d dz ) 2 d = K d ,
K = 2 Γ 0 ( e ̂ · ) 2 E 0 0 = 2 Γ I t ( e ̂ · ) 2 E 0 A 2 dxdy ,
( L K ) c = π 2 ,

Metrics