Abstract

All-optical wavelength selective single and dual channel dropping by sum frequency generation has been demonstrated in a periodically poled Ti:LiNbO3 waveguide, which has two second harmonic phase-matching peaks. Less than -17 dB of channel dropping extinction ratio was observed with coupled pump power of 325 mW.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, �??Quasi-phase �??matched optical parametric oscillators in bulk periodically poled LiNbO3,�?? J. Opt. Soc. Am. B 12, 2102-2116 (1995).
    [CrossRef]
  2. G. Schreiber, H. Suche, Y.L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti:LiNbO3Waveguides Using Pulsed and cw Pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, 73, 501-504 (2001).
  3. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
    [CrossRef]
  4. I. Yokohama, M. Asobe, A. Yokoo, H. Itoh, and T. Katno, �??All-optical switching by use of cascading of phasematched sum-frequency generation and difference-frequency generation processes,�?? J. Opt. Soc. Am. B 14, 3368-3377 (1997).
    [CrossRef]
  5. G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, �??Wavelength-Selective Pulsed All-Optical Switching Based on Cascaded Second-Order Nonlinearity in a Periodically Poled Lithium-Niobate Waveguide,�?? IEEE Photon. Technol. Lett. 13, 341 (2001).
    [CrossRef]
  6. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, �??Low-Power All-Optical Gate Based on Sum Frequency Mixing in APE Waveguides in PPLN,�?? IEEE Photon. Technol. Lett. 12, 654-656 (2000).
    [CrossRef]
  7. Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, �??Wavelength-and Time- Selective All-Optical Channel Dropping in Periodically Poled Ti:LiNbO3 Channel Waveguides,�?? IEEE Photon. Technol. Lett. 15, 978-980 (2003).
    [CrossRef]
  8. D. A. Bryan, R. Gerson, and H. E. Tomaschke, �??Increased optical damage resistance in lithium niobate,�?? Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  9. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, �??Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide�??,J. Korean Phys. Soc. 44, 267-270 (2004).
  10. S. Helmfrid, and G. Arvidsson, �??Influence of randomly varying domain lengths and nonuniform effective index on second-harmonic generation in quasi-phase-matching waveguides,�?? J. Opt. Soc. Am. B 8, 797-804 (1991).
    [CrossRef]
  11. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, �??Multi-channel wavelength conversion by use of engineered quasi-phase-matching structures in LiNbO3 waveguides,�??Opt. Lett. 24, 1157-1159 (1999).
    [CrossRef]
  12. Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, �??Broadening of the second-harmonic phase-matching bandwidth in a temperature gradient controlled periodically poled Ti:LiNbO3 channel waveguide,�?? Opt. Express 11, 2813 (2003).
    [CrossRef] [PubMed]
  13. Y. L. Lee, Y. Noh, C. Jung, D.-K. Ko, and J. Lee:in preparation.

Appl. Phys. B (1)

G. Schreiber, H. Suche, Y.L. Lee, W. Grundkötter, V. Quiring, R. Ricken, and W. Sohler, �??Efficient Cascaded Difference Frequency Conversion in Periodically Poled Ti:LiNbO3Waveguides Using Pulsed and cw Pumping,�?? Appl. Phys. B Special Issue on Integrated Optics, 73, 501-504 (2001).

Appl. Phys. Lett. (2)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, �??First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,�?? Appl. Phys. Lett. 62, 435-436 (1993).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, �??Increased optical damage resistance in lithium niobate,�?? Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

G. S. Kanter, P. Kumar, K. R. Parameswaran, and M. M. Fejer, �??Wavelength-Selective Pulsed All-Optical Switching Based on Cascaded Second-Order Nonlinearity in a Periodically Poled Lithium-Niobate Waveguide,�?? IEEE Photon. Technol. Lett. 13, 341 (2001).
[CrossRef]

K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, �??Low-Power All-Optical Gate Based on Sum Frequency Mixing in APE Waveguides in PPLN,�?? IEEE Photon. Technol. Lett. 12, 654-656 (2000).
[CrossRef]

Y. L. Lee, H. Suche, Y. H. Min, J. H. Lee, W. Grundkötter, V. Quiring, and W. Sohler, �??Wavelength-and Time- Selective All-Optical Channel Dropping in Periodically Poled Ti:LiNbO3 Channel Waveguides,�?? IEEE Photon. Technol. Lett. 15, 978-980 (2003).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. L. Lee, Y. Noh, C. Jung, T. J. Yu, D.-K. Ko, and J. Lee, �??Photorefractive effect in a periodically poled Ti:LiNbO3 channel waveguide�??,J. Korean Phys. Soc. 44, 267-270 (2004).

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (1)

Other (1)

Y. L. Lee, Y. Noh, C. Jung, D.-K. Ko, and J. Lee:in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase-matching characteristics for channel dropping by SFG. Vertical arrow lines indicate energy conservations.

Fig. 2.
Fig. 2.

The solid line is SHG curve at the operation temperature of 158 °C. The maximum conversion efficiency is measured to be 300 %/W.

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup; ECL : extended cavity semiconductor laser, DFB : distributed feedback laser, HP-EDFA : high power erbium-doped fiber amplifer, OSA : optical spectrum analyzer, (PC1, PC2, PC3) : polarization controller.

Fig. 4.
Fig. 4.

Optical spectrum at the output of the Ti:PPLN waveguide at three different pump wavelength and no pump. The insets show the spectra of generated SF.

Fig. 5.
Fig. 5.

Signal depletion by SFG versus coupled pump power.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d A 1 dz = i κ 1 A 2 A 3 * e i Δ k 1 z i κ 2 A 4 A 5 * e i Δ k 2 z ,
d A 2 * dz = i κ 1 A 1 A 3 * e i Δ k 1 z ,
d A 3 dz = i κ 1 A 1 A 2 e i Δ k 1 z ,
d A 4 * dz = i κ 2 A 1 A 5 * e i Δ k 2 z ,
d A 5 dz = i κ 2 A 1 A 4 e i Δ k 2 z ,

Metrics