Abstract

We demonstrate highly efficient white light generation by focusing 45 fs long pulses of 800 nm laser radiation with 1 mJ energy onto a 10 cm long barium fluoride crystal. The entire wavelength band from 400–1000 nm was generated with efficiency greater than 40%. We also observe multiphoton absorption induced fluorescence in the crystal. By employing line focusing geometry at low intensity, we show that white light fringes are formed with a single laser beam, indicative of the coherent property of the white light that is produced.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. R Alfano, The Supercontinuum laser source, Springer�??Verlag, Berlin (1989).
  2. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, �??Femtosecond white-light continuum pulses,�?? Opt. Lett. 8, 1-3 (1983).
    [CrossRef] [PubMed]
  3. P. B. Corkum, C Rolland, T. Srinivasan-Rao, �??Supercontinuum generation in gases,�?? Phys. Rev. Lett. 57, 2268�??2271 (1986).
    [CrossRef] [PubMed]
  4. A. Brodeur, F. A. Ilkov, S. L. Chin, �??Beam filamentation and the white light continuum divergence,�?? Opt. Commun. 129, 193-198 (1996).
    [CrossRef]
  5. G Yang, Y. R. Shen, �??Spectral broadening of ultrashort pulses in a nonlinear medium,�?? Opt. Lett. 9, 510-512 (1984).
    [CrossRef] [PubMed]
  6. M. Wittmann , A. Penzkofer, �??Spectral superbroadening of femtosecond laser pulses,�?? Opt. Commun. 126, 308-317 (1996).
    [CrossRef]
  7. W. L. Smith, P. Liu, N. Bloembergen, �??Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser,�?? Phys. Rev. A 15, 2396�??2403 (1977).
    [CrossRef]
  8. F. A. Ilkov, L. Sh. Ilkova, S. L. Chin, �??Supercontinuum generation versus optical breakdown in CO2 gas,�?? Opt. Lett. 18, 681-683 (1993).
    [CrossRef] [PubMed]
  9. J. K. Ranka, R. W. Schirmer, A. L. Gaeta, �??Observation of pulse splitting in nonlinear dispersive media,�?? Phys. Rev. Lett. 77, 3783�??3786 (1996).
    [CrossRef] [PubMed]
  10. N. Bloembergen, �??The influence of electron plasma formation on superbroadening in light filaments,�?? Opt. Commun. 8, 285-288 (1973).
    [CrossRef]
  11. P. K. Kennedy, �??A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,�?? IEEE J. Quantum Electron. 31, 2241-2249 (1995).
    [CrossRef]
  12. Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, C. R. Thompson, �??Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,�?? IEEE J. Quantum Electron. 33, 127-137 (1997).
    [CrossRef]
  13. A. Brodeur, S. L. Chin �??Band-gap dependence of the ultrafast white light continuum,�?? Phys. Rev. Lett. 80, 4406�??4409 (1998).
    [CrossRef]
  14. A. Brodeur, S. L. Chin �??Ultrafast white light continuum generation and self-focusing in transparent media,�?? J. Opt. Soc. Am. B 16, 637-649 (1999).
    [CrossRef]
  15. M. Klesik, G. Katona, J. V. Moloney, E. M. Wright, �??Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,�?? Phys. Rev. Lett. 91, 043905-1 (2003).
    [CrossRef]
  16. G. F. Knoll, Radiation detection and measurement, Wiley, New York (1989).
  17. R. DeSalvo, A. A. Said, D. J. Hagan, E. W.v an Stryland, M.Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324�??1333 (1996).
    [CrossRef]
  18. R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao , C. H. Townes, �??Small-scale trapped filaments in intense laser beams,�?? Phys. Rev. 166, 326�??331 (1968).
    [CrossRef]
  19. M. Fujimoto, S. Aoshima, M. Hosoda, Y. Tsuchiya, �??Femtosecond time-resolved optical polarigraphy: imaging of the propagation dynamics of intense light in a medium,�?? Opt. Lett. 24, 850-852 (1999).
    [CrossRef]
  20. I. Golub, �??Optical characteristics of supercontinuum generation,�?? Opt. Lett. 15, 305- 307 (1990).
    [CrossRef] [PubMed]
  21. S. L Chin, S. Petit, F. Borne, K. Miyazaki, �??The white light supercontinuum is indeed an ultrafast white light,�?? Jpn. J. Appl. Phys. 38, L126-128 (1999).
    [CrossRef]
  22. W. Watanabe, K. Itoh, �??Spatial coherence of supercontinuum emitters from multiple filaments,�?? Jpn. J. Appl. Phys. 40, 592-595 (2001).
    [CrossRef]
  23. K. Cook, A.K. Kar, R. A. Lamb, �??White-light supercontinuum interference of self�??focused filaments in water,�?? App. Phys. Lett. 83, 3861-3863 (2003).
    [CrossRef]

App. Phys. Lett. (1)

K. Cook, A.K. Kar, R. A. Lamb, �??White-light supercontinuum interference of self�??focused filaments in water,�?? App. Phys. Lett. 83, 3861-3863 (2003).
[CrossRef]

IEEE J. Quantum Electron. (3)

R. DeSalvo, A. A. Said, D. J. Hagan, E. W.v an Stryland, M.Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324�??1333 (1996).
[CrossRef]

P. K. Kennedy, �??A first-order model for computation of laser-induced breakdown thresholds in ocular and aqueous media. I. Theory,�?? IEEE J. Quantum Electron. 31, 2241-2249 (1995).
[CrossRef]

Q. Feng, J. V. Moloney, A. C. Newell, E. M. Wright, K. Cook, P. K. Kennedy, D. X. Hammer, B. A. Rockwell, C. R. Thompson, �??Theory and simulation on the threshold of water breakdown induced by focused ultrashort laser pulses,�?? IEEE J. Quantum Electron. 33, 127-137 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (2)

S. L Chin, S. Petit, F. Borne, K. Miyazaki, �??The white light supercontinuum is indeed an ultrafast white light,�?? Jpn. J. Appl. Phys. 38, L126-128 (1999).
[CrossRef]

W. Watanabe, K. Itoh, �??Spatial coherence of supercontinuum emitters from multiple filaments,�?? Jpn. J. Appl. Phys. 40, 592-595 (2001).
[CrossRef]

Opt. Commun. (3)

N. Bloembergen, �??The influence of electron plasma formation on superbroadening in light filaments,�?? Opt. Commun. 8, 285-288 (1973).
[CrossRef]

A. Brodeur, F. A. Ilkov, S. L. Chin, �??Beam filamentation and the white light continuum divergence,�?? Opt. Commun. 129, 193-198 (1996).
[CrossRef]

M. Wittmann , A. Penzkofer, �??Spectral superbroadening of femtosecond laser pulses,�?? Opt. Commun. 126, 308-317 (1996).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

R. G. Brewer, J. R. Lifsitz, E. Garmire, R. Y. Chiao , C. H. Townes, �??Small-scale trapped filaments in intense laser beams,�?? Phys. Rev. 166, 326�??331 (1968).
[CrossRef]

Phys. Rev. A (1)

W. L. Smith, P. Liu, N. Bloembergen, �??Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG: Nd laser,�?? Phys. Rev. A 15, 2396�??2403 (1977).
[CrossRef]

Phys. Rev. Lett. (4)

J. K. Ranka, R. W. Schirmer, A. L. Gaeta, �??Observation of pulse splitting in nonlinear dispersive media,�?? Phys. Rev. Lett. 77, 3783�??3786 (1996).
[CrossRef] [PubMed]

P. B. Corkum, C Rolland, T. Srinivasan-Rao, �??Supercontinuum generation in gases,�?? Phys. Rev. Lett. 57, 2268�??2271 (1986).
[CrossRef] [PubMed]

A. Brodeur, S. L. Chin �??Band-gap dependence of the ultrafast white light continuum,�?? Phys. Rev. Lett. 80, 4406�??4409 (1998).
[CrossRef]

M. Klesik, G. Katona, J. V. Moloney, E. M. Wright, �??Physical factors limiting the spectral extent and band gap dependence of supercontinuum generation,�?? Phys. Rev. Lett. 91, 043905-1 (2003).
[CrossRef]

Other (2)

G. F. Knoll, Radiation detection and measurement, Wiley, New York (1989).

R. R Alfano, The Supercontinuum laser source, Springer�??Verlag, Berlin (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The left panel depicts the barium fluoride crystal used to generate white light. The white screen shows the continuum that is generated; this is shown more clearly in the right panel.

Fig. 2.
Fig. 2.

Typical spectrum of white light generated in BaF2. An actual photograph of the continuum is shown in Fig. 1. The narrow peak is the spectrum of the incident laser.

Fig. 3.
Fig. 3.

The left panel shows induced fluorescence (blue line inside the crystal) upon irradiation by 800 nm laser light. The right panel shows induced fluorescence that results from 266 nm excitation. No such excitation was observed in the case of incident radiation at 355 nm.

Fig.4.
Fig.4.

Typical interference pattern obtained from line focused white light continuum generated in BK-7 glass. The line pattern that is seen corresponds to the green component of white light. Similar fringe patterns are expected in measurements that use any large bandgap material that results in white light generation.

Metrics