Abstract

Pre-chirp of the input pulse has a significant effect on pulse evolution in a photonic crystal fiber. We present numerical simulations which show that the supercontinuum bandwidth increases with the linear chirp, and that the coherence of supercontinuum improves as frequency chirping increases. An optimal positive chirp is identified that maximizes the supercontinuum bandwidth, corresponding to the formation of only one red-shifting Raman soliton.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, �??All-silica single mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996).
    [CrossRef] [PubMed]
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25�??27 (2000).
    [CrossRef]
  3. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, �??Supercontinuum generation in tapered fibers,�?? Opt. Lett. 25, 1415�??1417 (2000).
    [CrossRef]
  4. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, �??Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,�?? Opt. Lett. 26, 608�??610 (2001).
    [CrossRef]
  5. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
    [CrossRef] [PubMed]
  6. I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, �??Observation of soliton self-frequency shift in photonic crystal fiber,�?? Electron. Lett. 38, 167�??169 (2002).
    [CrossRef]
  7. A. B. Fedotov, P. Zhou, Y. N. Kondrat�??ev, S. N. Bagayev, V. S. Shevandin, K. V. Dukel�??skii, V. B. Smirnov, A. P. Tarasevitch, D. von der Linde, and A. M. Zheltikov, �??The mode structure and spectral properties of supercontinuum emission from microstructure fibers,�?? JETP 95, 851�??860 (2002).
    [CrossRef]
  8. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, �??Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,�?? J. Opt. Soc. Am. B 19, 2165�??2170 (2002).
    [CrossRef]
  9. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weberand, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113,904 (2003).
    [CrossRef]
  10. Z. Zhu and T. G. Brown, �??Polarization properties of sumpercontinuum spectra generated in birefringent photonic crystal fibers,�?? J. Opt. Soc. Am. B 21, 249�??257 (2004).
    [CrossRef]
  11. K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665�??2673 (1989).
    [CrossRef]
  12. A. L. Gaeta, �??Nonlinear propagation and continuum generation in microstructured optical fibers,�?? Opt. Lett. 27, 924�??926 (2002).
    [CrossRef]
  13. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2002).
  14. J. M. Dudley and S. Coen, �??Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,�?? Opt. Lett. 27, 1180�??1182 (2002).
    [CrossRef]
  15. Y. Wu, C.-Y. Lou, M. Han, T. Wang, and Y.-Z. Gao, �??Effects of pulse chirp on supercontinuum produced in dispersion decreasing fibre,�?? Chin. Phys. 11, 578�??582 (2002).
    [CrossRef]
  16. A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  17. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
    [CrossRef] [PubMed]
  18. J. P. Gordon, �??Theory of the soliton self-frequency shift,�?? Opt. Lett. 11, 662�??664 (1986).
    [CrossRef] [PubMed]
  19. F. G. Omenetto, B. P. Luce, and A. J. Taylor, �??Genetic algorithms pulse shaping for optimum femtosecond propagation in optical fibers,�?? J. Opt. Soc. Am. B 16, 2005�??2009 (1999).
    [CrossRef]

Chin. Phys.

Y. Wu, C.-Y. Lou, M. Han, T. Wang, and Y.-Z. Gao, �??Effects of pulse chirp on supercontinuum produced in dispersion decreasing fibre,�?? Chin. Phys. 11, 578�??582 (2002).
[CrossRef]

Electron. Lett.

I. G. Cormack, D. T. Reid, W. J. Wadsworth, J. C. Knight, and P. St. J. Russel, �??Observation of soliton self-frequency shift in photonic crystal fiber,�?? Electron. Lett. 38, 167�??169 (2002).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665�??2673 (1989).
[CrossRef]

J. Opt. Soc. Am. B

JETP

A. B. Fedotov, P. Zhou, Y. N. Kondrat�??ev, S. N. Bagayev, V. S. Shevandin, K. V. Dukel�??skii, V. B. Smirnov, A. P. Tarasevitch, D. von der Linde, and A. M. Zheltikov, �??The mode structure and spectral properties of supercontinuum emission from microstructure fibers,�?? JETP 95, 851�??860 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264�??2267 (2000).
[CrossRef] [PubMed]

A. V. Husakou and J. Herrmann, �??Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,�?? Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, �??Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,�?? Phys. Rev. Lett. 88, 173901 (2002).
[CrossRef] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weberand, and R. S. Windeler, �??Fundamental noise limitations to supercontinuum generation in microstructure fiber,�?? Phys. Rev. Lett. 90, 113,904 (2003).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, San Diego, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Effect of chirp on SC: (a) 20-dB bandwidth, (b) temporal shape, (c) spectrum, and (d) coherence. Fiber length L=10 cm, P 0=5 kW, T 0=100 fs. Five typical chirps Cp =-10, 0, 10, 17 and 25 are labelled respectively as A, B, C, D and E.

Fig. 2.
Fig. 2.

The temporal evolution along the fiber of the input pulse with initial chirp of (a) Cp =10, (b) Cp =17, and (c) Cp =25. Other simulation conditions are same as in Fig. 1.

Fig. 3.
Fig. 3.

Calculated optimal chirp and 20-dB SC bandwidth as a function of T 0. The dashed line denotes the soliton order N of the input pulse. Fiber length L=10 cm, P 0=5 kW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A z = m 2 i m + 1 β m m ! m A τ m α 2 A + i γ ( 1 + i ω 0 τ ) [ A ( z , τ ) τ d τ R ( τ τ ) A ( z , τ ) 2 ] ,
A ( 0 , τ ) = P 0 sech ( τ T 0 ) exp ( i C p τ 2 2 T 0 2 ) ,

Metrics