Abstract

Violet diode lasers and vertical extended cavity surface emitting lasers are used within an optical trapping system. Two distinct but related studies are performed. Firstly, the optical trapping efficiency in terms of the Q parameter for micron and sub-micron sized particles is determined. Secondly, we use the violet diode laser to observe and fluoresce 4′-6-Diamidino-2-phenylindole (DAPI) stained chromosomes, green fluorescent protein (GFP) transfected neuroblastomas and fluorescent polymer spheres within an optical tweezers using a 1064nm trap laser. This work paves the way for both reduced trap volumes and for biological tagging, chromosome selection or observing protein dynamics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Cable, Dziedzic, and S. Chu, “Observation of a single beam optical trap,” Opt. Lett. 11, 288 (1986)
    [CrossRef] [PubMed]
  2. W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
    [CrossRef]
  3. A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
    [CrossRef] [PubMed]
  4. R.S. Conroy, et al. “Characterisation of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
    [CrossRef]
  5. H.A Jones-Bey “Vertical cavity lasers-VECSEL technology unveiled at OFC” Laser Focus World 37, 60 (2001)
  6. Blue Sky Research “Chromalase 405” http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf
  7. H Leinen, et al. “InGaN blue diode lasers: a spectroscopist’s view,” Appl Phys. B 70, 567–571 (2000)
    [CrossRef]
  8. HM Shapiro and NG Perlmutter “Violet laser-diodes as light sources for cytometry,” Cytometry 44, 133–136 (2001).
    [CrossRef] [PubMed]
  9. J.M. Girkin and A.I. Ferguson, et al. “Confocal microscopy using an InGaN violet laser-diode at 406nm” Opt Express 7, 336–341 (2000) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336.
    [CrossRef] [PubMed]
  10. F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
  11. J. Lippincott-Schwartz and G.H. Patterson “Development and use of fluorescent protein markers in living cells,” Science 300, 87–91 (2003)
    [CrossRef] [PubMed]
  12. G.H. Patterson and J. Lippincott-Schwartz “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002)
    [CrossRef] [PubMed]
  13. A. Rohrbach and E.H.K. Stelzer “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys 91, 5474–5488 (2002)
    [CrossRef]
  14. A.T. O’Neil and M.J. Padgett “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun 193, 45–50 (2001)
    [CrossRef]
  15. A. Rohrbach and E.H.K Stelzer “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002)
    [CrossRef] [PubMed]
  16. H. Felgner, O. Muller, and M Schliwa. “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995)
    [CrossRef] [PubMed]

2003 (1)

J. Lippincott-Schwartz and G.H. Patterson “Development and use of fluorescent protein markers in living cells,” Science 300, 87–91 (2003)
[CrossRef] [PubMed]

2002 (3)

G.H. Patterson and J. Lippincott-Schwartz “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002)
[CrossRef] [PubMed]

A. Rohrbach and E.H.K. Stelzer “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys 91, 5474–5488 (2002)
[CrossRef]

A. Rohrbach and E.H.K Stelzer “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002)
[CrossRef] [PubMed]

2001 (3)

HM Shapiro and NG Perlmutter “Violet laser-diodes as light sources for cytometry,” Cytometry 44, 133–136 (2001).
[CrossRef] [PubMed]

A.T. O’Neil and M.J. Padgett “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun 193, 45–50 (2001)
[CrossRef]

H.A Jones-Bey “Vertical cavity lasers-VECSEL technology unveiled at OFC” Laser Focus World 37, 60 (2001)

2000 (3)

H Leinen, et al. “InGaN blue diode lasers: a spectroscopist’s view,” Appl Phys. B 70, 567–571 (2000)
[CrossRef]

R.S. Conroy, et al. “Characterisation of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

J.M. Girkin and A.I. Ferguson, et al. “Confocal microscopy using an InGaN violet laser-diode at 406nm” Opt Express 7, 336–341 (2000) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336.
[CrossRef] [PubMed]

1995 (1)

1990 (1)

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

1986 (1)

Ashkin, A

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

Ashkin, A.

Berns, M.W.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Cable,

Chu, S.

Conroy, R.S.

R.S. Conroy, et al. “Characterisation of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Dziedzic,

Dziedzic, J M

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

Felgner, H.

Ferguson, A.I.

J.M. Girkin and A.I. Ferguson, et al. “Confocal microscopy using an InGaN violet laser-diode at 406nm” Opt Express 7, 336–341 (2000) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336.
[CrossRef] [PubMed]

Girkin, J.M.

J.M. Girkin and A.I. Ferguson, et al. “Confocal microscopy using an InGaN violet laser-diode at 406nm” Opt Express 7, 336–341 (2000) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336.
[CrossRef] [PubMed]

Jones-Bey, H.A

H.A Jones-Bey “Vertical cavity lasers-VECSEL technology unveiled at OFC” Laser Focus World 37, 60 (2001)

Leinen, H

H Leinen, et al. “InGaN blue diode lasers: a spectroscopist’s view,” Appl Phys. B 70, 567–571 (2000)
[CrossRef]

Lippincott-Schwartz, J.

J. Lippincott-Schwartz and G.H. Patterson “Development and use of fluorescent protein markers in living cells,” Science 300, 87–91 (2003)
[CrossRef] [PubMed]

G.H. Patterson and J. Lippincott-Schwartz “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002)
[CrossRef] [PubMed]

Moss, L.G.

F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

Muller, O.

O’Neil, A.T.

A.T. O’Neil and M.J. Padgett “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun 193, 45–50 (2001)
[CrossRef]

Padgett, M.J.

A.T. O’Neil and M.J. Padgett “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun 193, 45–50 (2001)
[CrossRef]

Patterson, G.H.

J. Lippincott-Schwartz and G.H. Patterson “Development and use of fluorescent protein markers in living cells,” Science 300, 87–91 (2003)
[CrossRef] [PubMed]

G.H. Patterson and J. Lippincott-Schwartz “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002)
[CrossRef] [PubMed]

Perlmutter, NG

HM Shapiro and NG Perlmutter “Violet laser-diodes as light sources for cytometry,” Cytometry 44, 133–136 (2001).
[CrossRef] [PubMed]

Phillips, G.N.

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html

Rohrbach, A.

A. Rohrbach and E.H.K. Stelzer “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys 91, 5474–5488 (2002)
[CrossRef]

A. Rohrbach and E.H.K Stelzer “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41, 2494–2507 (2002)
[CrossRef] [PubMed]

Schliwa, M

Shapiro, HM

HM Shapiro and NG Perlmutter “Violet laser-diodes as light sources for cytometry,” Cytometry 44, 133–136 (2001).
[CrossRef] [PubMed]

Sonek, G.J.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Stelzer, E.H.K

Stelzer, E.H.K.

A. Rohrbach and E.H.K. Stelzer “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys 91, 5474–5488 (2002)
[CrossRef]

Tadir, Y.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Wright, W.H.

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Yang, F.

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html

Appl Phys. B (1)

H Leinen, et al. “InGaN blue diode lasers: a spectroscopist’s view,” Appl Phys. B 70, 567–571 (2000)
[CrossRef]

Appl. Opt. (2)

Cytometry (1)

HM Shapiro and NG Perlmutter “Violet laser-diodes as light sources for cytometry,” Cytometry 44, 133–136 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W.H. Wright, G.J. Sonek, Y. Tadir, and M.W. Berns “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

J. Appl. Phys (1)

A. Rohrbach and E.H.K. Stelzer “Three-dimensional position detection of optically trapped dielectric particles,” J. Appl. Phys 91, 5474–5488 (2002)
[CrossRef]

Laser Focus World (1)

H.A Jones-Bey “Vertical cavity lasers-VECSEL technology unveiled at OFC” Laser Focus World 37, 60 (2001)

Opt Express (1)

J.M. Girkin and A.I. Ferguson, et al. “Confocal microscopy using an InGaN violet laser-diode at 406nm” Opt Express 7, 336–341 (2000) http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336.
[CrossRef] [PubMed]

Opt. Commun (1)

A.T. O’Neil and M.J. Padgett “Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,” Opt. Commun 193, 45–50 (2001)
[CrossRef]

Opt. Commun. (1)

R.S. Conroy, et al. “Characterisation of an extended cavity violet diode laser,” Opt. Commun. 175, 185–188 (2000).
[CrossRef]

Opt. Lett. (1)

Science (2)

J. Lippincott-Schwartz and G.H. Patterson “Development and use of fluorescent protein markers in living cells,” Science 300, 87–91 (2003)
[CrossRef] [PubMed]

G.H. Patterson and J. Lippincott-Schwartz “A photoactivatable GFP for selective photolabeling of proteins and cells,” Science 297, 1873–1877 (2002)
[CrossRef] [PubMed]

Other (3)

F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html

Blue Sky Research “Chromalase 405” http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf

A Ashkin and J M Dziedzic “Optical trapping and manipulation of viruses and bacteria,” Science235, 1517–1520 (1987)F. Yang, L.G. Moss, and G.N. Phillips. “The molecular structure of green fluorescent protein,” http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html
[CrossRef] [PubMed]

Supplementary Material (1)

» Media 1: MPEG (887 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental violet ECDL tweezers set up.

Fig. 2.
Fig. 2.

CCD camera images showing particle manipulation of a 0.4 µm sphere in our optical tweezers using the ECDL

Fig. 3.
Fig. 3.

Comparison between two chromosomes under violet laser illumination, first picture and under white light illumination, last picture. The central picture shows the first picture overlaid by a red version of the last picture indicating the fluorescence is coming in part from one chromosome and in part from the other.

Fig. 4.
Fig. 4.

Guiding of one chromosome compared to a group of chromosomes.

Fig. 5.
Fig. 5.

A human neuron (neuroblastoma) cell containing, viewed under a conventional fluorescence microscope-exhibiting fluorescence across the entire cell.

Fig. 6.
Fig. 6.

A section of a human neuron (neuroblastoma) cell containing GFP viewed with a violet diode laser fluorescence illuminator and a x100 microscope objective – exhibiting fluorescence of only a section of the cell.

Fig. 7.
Fig. 7.

(1.95 Mb) Movie of the simultaneous fluorescence and manipulation of blue fluorescent 1 µm polymer spheres

Tables (1)

Tables Icon

Table 1. Q values of the tweezer set up operated with different lasers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F trap = Q n m P c
F stoke = 3 π η d ν

Metrics