Abstract

Violet diode lasers and vertical extended cavity surface emitting lasers are used within an optical trapping system. Two distinct but related studies are performed. Firstly, the optical trapping efficiency in terms of the Q parameter for micron and sub-micron sized particles is determined. Secondly, we use the violet diode laser to observe and fluoresce 4′-6-Diamidino-2-phenylindole (DAPI) stained chromosomes, green fluorescent protein (GFP) transfected neuroblastomas and fluorescent polymer spheres within an optical tweezers using a 1064nm trap laser. This work paves the way for both reduced trap volumes and for biological tagging, chromosome selection or observing protein dynamics.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin, Cable, Dziedzic and S. Chu, �??Observation of a single beam optical trap,�?? Opt. Lett. 11, 288 (1986).
    [CrossRef] [PubMed]
  2. W.H. Wright, G.J.Sonek, Y.Tadir, M.W.Berns, �??Laser trapping in cell biology,�?? IEEE J. Quantum Electron. 26, 2148-2157 (1990).
    [CrossRef]
  3. A. Ashkin, J.M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987), F.Yang, L.G. Moss, G.N. Phillips, �??The molecular structure of green fluorescent protein,�?? <a href="http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html">http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html</a>.
    [CrossRef] [PubMed]
  4. R.S. Conroy, et al., �??Characterisation of an extended cavity violet diode laser,�?? Opt. Commun. 175, 185-188 (2000).
    [CrossRef]
  5. H.A. Jones-Bey, �??Vertical cavity lasers - VECSEL technology unveiled at OFC,�?? Laser Focus World 37, 60 (2001).
  6. Blue Sky Research, �??Chromalase 405,�?? <a href="http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf">http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf</a>.
  7. H. Leinen, et al., �??InGaN blue diode lasers: a spectroscopist's view,�?? Appl Phys. B 70, 567-571 (2000).
    [CrossRef]
  8. H.M. Shapiro, N.G. Perlmutter, �??Violet laser-diodes as light sources for cytometry,�?? Cytometry 44, 133-136 (2001).
    [CrossRef] [PubMed]
  9. J.M. Girkin, A.I. Ferguson, et al. �??Confocal microscopy using an InGaN violet laser-diode at 406nm,�?? Opt. Express 7, 336-341 (2000) <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-10-336</a>.
    [CrossRef] [PubMed]
  10. F.Yang, L.G. Moss, G.N. Phillips, �??The molecular structure of green fluorescent protein,�?? <a href="http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html">http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html</a>.
  11. J. Lippincott-Schwartz, G.H. Patterson, �??Development and use of fluorescent protein markers in living cells,�?? Science 300, 87-91 (2003).
    [CrossRef] [PubMed]
  12. G.H. Patterson, J. Lippincott-Schwartz �??A photoactivatable GFP for selective photolabeling of proteins and cells,�?? Science 297, 1873-1877 (2002).
    [CrossRef] [PubMed]
  13. A. Rohrbach, E.H.K. Stelzer, �??Three-dimensional position detection of optically trapped dielectric particles,�?? J. Appl. Phys. 91, 5474-5488 (2002).
    [CrossRef]
  14. A.T. O�??Neil, M.J. Padgett, �??Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,�?? Opt. Commun. 193, 45-50 (2001).
    [CrossRef]
  15. A. Rohrbach, E.H.K Stelzer, �??Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,�?? Appl. Opt. 41, 2494-2507 (2002).
    [CrossRef] [PubMed]
  16. H. Felgner, O. Muller, M Schliwa, �??Calibration of light forces in optical tweezers,�?? Appl. Opt. 34, 977-982 (1995).
    [CrossRef] [PubMed]

Appl Phys. B (1)

H. Leinen, et al., �??InGaN blue diode lasers: a spectroscopist's view,�?? Appl Phys. B 70, 567-571 (2000).
[CrossRef]

Appl. Opt. (2)

Cytometry (1)

H.M. Shapiro, N.G. Perlmutter, �??Violet laser-diodes as light sources for cytometry,�?? Cytometry 44, 133-136 (2001).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W.H. Wright, G.J.Sonek, Y.Tadir, M.W.Berns, �??Laser trapping in cell biology,�?? IEEE J. Quantum Electron. 26, 2148-2157 (1990).
[CrossRef]

J. Appl. Phys. (1)

A. Rohrbach, E.H.K. Stelzer, �??Three-dimensional position detection of optically trapped dielectric particles,�?? J. Appl. Phys. 91, 5474-5488 (2002).
[CrossRef]

Laser Focus World (1)

H.A. Jones-Bey, �??Vertical cavity lasers - VECSEL technology unveiled at OFC,�?? Laser Focus World 37, 60 (2001).

Opt. Commun. (2)

A.T. O�??Neil, M.J. Padgett, �??Axial and lateral trapping efficiency of Laguerre-Gaussian modes in inverted optical tweezers,�?? Opt. Commun. 193, 45-50 (2001).
[CrossRef]

R.S. Conroy, et al., �??Characterisation of an extended cavity violet diode laser,�?? Opt. Commun. 175, 185-188 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Science (3)

A. Ashkin, J.M. Dziedzic, �??Optical trapping and manipulation of viruses and bacteria,�?? Science 235, 1517-1520 (1987), F.Yang, L.G. Moss, G.N. Phillips, �??The molecular structure of green fluorescent protein,�?? <a href="http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html">http://www-bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html</a>.
[CrossRef] [PubMed]

J. Lippincott-Schwartz, G.H. Patterson, �??Development and use of fluorescent protein markers in living cells,�?? Science 300, 87-91 (2003).
[CrossRef] [PubMed]

G.H. Patterson, J. Lippincott-Schwartz �??A photoactivatable GFP for selective photolabeling of proteins and cells,�?? Science 297, 1873-1877 (2002).
[CrossRef] [PubMed]

Other (2)

F.Yang, L.G. Moss, G.N. Phillips, �??The molecular structure of green fluorescent protein,�?? <a href="http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html">http://www.bioc.rice.edu/Bioch/Phillips/Papers/gfpbio.html</a>.

Blue Sky Research, �??Chromalase 405,�?? <a href="http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf">http://www.blueskyresearch.com/pdfs/chromalase/ChromaLase405-081203.pdf</a>.

Supplementary Material (1)

» Media 1: MPEG (887 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental violet ECDL tweezers set up.

Fig. 2.
Fig. 2.

CCD camera images showing particle manipulation of a 0.4 µm sphere in our optical tweezers using the ECDL

Fig. 3.
Fig. 3.

Comparison between two chromosomes under violet laser illumination, first picture and under white light illumination, last picture. The central picture shows the first picture overlaid by a red version of the last picture indicating the fluorescence is coming in part from one chromosome and in part from the other.

Fig. 4.
Fig. 4.

Guiding of one chromosome compared to a group of chromosomes.

Fig. 5.
Fig. 5.

A human neuron (neuroblastoma) cell containing, viewed under a conventional fluorescence microscope-exhibiting fluorescence across the entire cell.

Fig. 6.
Fig. 6.

A section of a human neuron (neuroblastoma) cell containing GFP viewed with a violet diode laser fluorescence illuminator and a x100 microscope objective – exhibiting fluorescence of only a section of the cell.

Fig. 7.
Fig. 7.

(1.95 Mb) Movie of the simultaneous fluorescence and manipulation of blue fluorescent 1 µm polymer spheres

Tables (1)

Tables Icon

Table 1. Q values of the tweezer set up operated with different lasers

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F trap = Q n m P c
F stoke = 3 π η d ν

Metrics