Abstract

Combining the Mie scattering theory and a transfer matrix method, we investigate in detail the scattering of light by spherical Bragg “onion” resonators. We classify the resonator modes into two classes, the core modes that are confined by Bragg reflection, and the cladding modes that are confined by total internal reflection. We demonstrate that these two types of modes lead to significantly different scattering behaviors.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin and J. M. Dziedzic, �??Observation of Resonances in the Radiation Pressure on Dielectric Spheres,�?? Phys. Rev. Lett. 38, 1351-1355 (1977).
    [CrossRef]
  2. Petr Chylek, J. T. Kiehl, and M. K. W. Ko, �??Optical levitation and partial-wave resonances,�?? Phys. Rev. A. 18, 2229-2233, (1978).
    [CrossRef]
  3. V.B.Braginsky, M. L. Gorodetsky, and V.S. Ilchenko, �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A. 137, 393-396 (1989).
    [CrossRef]
  4. Craig F. Bohren, Donald R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc. 1998).
    [CrossRef]
  5. Kerry J. Vahala, �??Optical microcavities,�?? Nature 424, 839-846, (2003).
    [CrossRef] [PubMed]
  6. M. Cai, G. Hunziker, and K. Vahala, �??Fiber-optic add/drop device based on a silica microsphere-whispering gallery mode system,�?? IEEE Photon. Technol. Lett. 11, 686�??687, (1999).
    [CrossRef]
  7. M. Cai, P.O. Hedekvist, A. Bhardwaj, K. Vahala, �??5-Gbit/s BER performance on an all fiber-optic add/drop device based on a taper-resonator-taper structure,�?? IEEE Photon. Technol. Lett. 12, 1177-1179, (2000).
    [CrossRef]
  8. D.W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, �??Cavity QED with high-Q whispering gallery modes,�?? Phys. Rev. A. 57, R2293 (1998).
    [CrossRef]
  9. J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A. 67, 033806 (2003).
    [CrossRef]
  10. Z. S. Wu, L. X. Guo, K. F. Ren, G. Gouesbet, and G. Grehan, "Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres," Appl. Opt. 36, 5188-5198 (1997).
    [CrossRef] [PubMed]
  11. Kevin G. Sullivan and Dennis G. Hall, �??Radiation in spherically symmetric structure. I. the coupled-amplitude equations for vector spherical waves,�?? Phys. Rev. A. 50, 2701-2707, (1994).
    [CrossRef] [PubMed]
  12. David D. Smith, Kirk A. Fuller, �??Photonic bandgaps in Mie scattering by concentrically stratified spheres,�?? J. Opt. Soc. Am. B. 19, 2449-2455, (2002).
    [CrossRef]
  13. Yong Xu, Wei Liang, Amnon Yariv, J. G. Fleming, and Shawn-Yu Lin, �??High quality factor Bragg onion resonators with omnidirectional reflector cladding,�?? Opt. Lett. 28, 2144-2146 (2003).
    [CrossRef] [PubMed]
  14. Yong Xu, Wei Liang, Amnon Yariv, J. G. Fleming, and Shawn-Yu Lin, �??Modal analysis of spherically symmetric Bragg resonators,�?? to appear in Opt. Lett.
  15. G. Mie, �??�??Beitrâge zur optik truber Medien, speziell kolloidaler Metallosungen,�??�?? Ann. Phys. 25, 377�??452 (1908).
    [CrossRef]
  16. John David Jackson, Classical Electrodynamics, (John Wiley & Sons, Inc., Third Edition, 1999), Chap. 10.
  17. G. Gouesbet, B. Maheu, and G. Grehan, �??Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation,�?? J. Opt. Soc. Am. A 5, 1427-1442, (1988).
    [CrossRef]
  18. J. A Lock and G. Gouesbet, �??Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,�?? J. Opt. Soc. Am. A 11, 2503-2515, (1994).
    [CrossRef]
  19. M. L. Gorodetsky and V. S. IIchenko, �??Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,�?? J. Opt. Soc. Am. B 16, 147-154, (1999).
    [CrossRef]
  20. U. Fano, �??Effects of configuration interaction on intensities and phase shifts,�?? Phys. Rev. 124, 1866-1878, (1961).
    [CrossRef]

Ann. Phys.

G. Mie, �??�??Beitrâge zur optik truber Medien, speziell kolloidaler Metallosungen,�??�?? Ann. Phys. 25, 377�??452 (1908).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

M. Cai, G. Hunziker, and K. Vahala, �??Fiber-optic add/drop device based on a silica microsphere-whispering gallery mode system,�?? IEEE Photon. Technol. Lett. 11, 686�??687, (1999).
[CrossRef]

M. Cai, P.O. Hedekvist, A. Bhardwaj, K. Vahala, �??5-Gbit/s BER performance on an all fiber-optic add/drop device based on a taper-resonator-taper structure,�?? IEEE Photon. Technol. Lett. 12, 1177-1179, (2000).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Opt. Soc. Am. B.

David D. Smith, Kirk A. Fuller, �??Photonic bandgaps in Mie scattering by concentrically stratified spheres,�?? J. Opt. Soc. Am. B. 19, 2449-2455, (2002).
[CrossRef]

Nature

Kerry J. Vahala, �??Optical microcavities,�?? Nature 424, 839-846, (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Lett. A.

V.B.Braginsky, M. L. Gorodetsky, and V.S. Ilchenko, �??Quality-factor and nonlinear properties of optical whispering-gallery modes,�?? Phys. Lett. A. 137, 393-396 (1989).
[CrossRef]

Phys. Rev.

U. Fano, �??Effects of configuration interaction on intensities and phase shifts,�?? Phys. Rev. 124, 1866-1878, (1961).
[CrossRef]

Phys. Rev. A.

Kevin G. Sullivan and Dennis G. Hall, �??Radiation in spherically symmetric structure. I. the coupled-amplitude equations for vector spherical waves,�?? Phys. Rev. A. 50, 2701-2707, (1994).
[CrossRef] [PubMed]

Petr Chylek, J. T. Kiehl, and M. K. W. Ko, �??Optical levitation and partial-wave resonances,�?? Phys. Rev. A. 18, 2229-2233, (1978).
[CrossRef]

D.W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko, and H. J. Kimble, �??Cavity QED with high-Q whispering gallery modes,�?? Phys. Rev. A. 57, R2293 (1998).
[CrossRef]

J. R. Buck and H. J. Kimble, "Optimal sizes of dielectric microspheres for cavity QED with strong coupling," Phys. Rev. A. 67, 033806 (2003).
[CrossRef]

Phys. Rev. Lett.

A. Ashkin and J. M. Dziedzic, �??Observation of Resonances in the Radiation Pressure on Dielectric Spheres,�?? Phys. Rev. Lett. 38, 1351-1355 (1977).
[CrossRef]

Other

Craig F. Bohren, Donald R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc. 1998).
[CrossRef]

Yong Xu, Wei Liang, Amnon Yariv, J. G. Fleming, and Shawn-Yu Lin, �??Modal analysis of spherically symmetric Bragg resonators,�?? to appear in Opt. Lett.

John David Jackson, Classical Electrodynamics, (John Wiley & Sons, Inc., Third Edition, 1999), Chap. 10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

A SEM image of the onion resonator.

Fig. 2.
Fig. 2.

Light scattering by a spherical Bragg “onion” resonator.

Fig. 3.
Fig. 3.

Radial dependence of the electrical field of TE mode and the magnetic field of TM mode.

Fig. 4.
Fig. 4.

Spectrum of the onion resonator modes (calculated with Nclad =4).

Fig. 5.
Fig. 5.

Spectrum of total scattering efficiency. The number of Bragg pairs is Nclad =4.

Fig. 6.
Fig. 6.

Comparison of scattering resonances numerically obtained using the Mie scattering method developed in section 2, and those given by a Lorentzian approximation. The number of Bragg pair is Nclad =4.

Fig. 7.
Fig. 7.

Scattering resonances of the TE10 and TE24 modes (with Nclad =4 and 5). The dashed lines represent the resonant scattering coefficient -Re(αl) (whose values are shown on the left y-axis), and the solid lines represent the total scattering efficiency Qtotscatt (whose values are shown on the right y-axis). The dashed vertical lines give the position of modal wavelength.

Fig. 8.
Fig. 8.

Comparison of the scattering resonance width Γ res and the modal quality factor as a function of the Bragg pair number. ΓresL and Γrestot represent, respectively, the resonance width of the scattering coefficient — Re(α) and the total scattering efficiency Qtotscatt (see Fig. 7(a)).

Fig. 9.
Fig. 9.

Effect of absorption on scattering resonances. The number of Bragg pairs is Nclad =4.

Fig. 10.
Fig. 10.

Comparison between plane and Gaussian incident wave. In both (a) and (b), the upper line is under the assumption the incident wave is a plane wave; the lower one is under the assumption the incident wave is a Gaussian beam with the waist width of 5µm with the sphere located at the center of the beam. In (a), the values of the upper and lower lines are shown on the left and right y-axis respectively. The number of Bragg pair is Nclad =4.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

E inc = e ̂ x e ikz = l = 1 i l 4 π ( 2 l + 1 ) 2 [ j l ( kr ) ( X l , + 1 + X l , 1 ) + 1 k × j l ( kr ) ( X l , + 1 X l , 1 ) ]
E sc x = l = 1 i l 4 π ( 2 l + 1 ) 2 [ α l 2 h l 1 ( kr ) ( X l , + 1 + X l , 1 ) + β l 2 k × h l 1 ( kr ) ( X l , + 1 X l , 1 ) ]
E sc x ie ikr kr ( cos ϕ · S 2 ( θ ) e ̂ θ sin ϕ · S 1 ( θ ) e ̂ ϕ )
S 2 ( θ ) = l = 1 ( 2 l + 1 ) l ( l + 1 ) ( α l 2 P l 1 sin θ + β l 2 dP l 1 d θ )
S 1 ( θ ) = l = 1 ( 2 l + 1 ) l ( l + 1 ) ( α l 2 dp l 1 d θ + β l 2 P l 1 sin θ )
d σ sc d Ω = dP sc I inc d Ω = 1 2 · c ε 0 E sc x 2 · r 2 1 2 · c ε 0 E inc 2
= 1 k 2 ( S 2 2 cos 2 ϕ + S 1 2 sin 2 ϕ )
σ total = π k 2 l = 1 ( 2 l + 1 ) Re [ α l + β l ]
[ H E ] = [ j l ( k n r ) X l , m h l 1 ( k n r ) X l , m Z n i k n × j l ( k n r ) X l , m Z n i k n × h l 1 ( k n r ) X l , m ] · [ A n B n ] ( TM )
[ E H ] = [ j l ( k n r ) X l , m h l 1 ( k n r ) X l , m i Z n k n × j l ( k n r ) X l , m i Z n k n × h l 1 ( k n r ) X l , m ] · [ C n D n ] ( TE )
[ j l ( k n r n ) h l 1 ( k n r n ) Z n k n r [ rj l ( k n r ) ] r n Z n k n r [ rh l 1 ( k n r ) ] r n ] ( A n B n ) =
[ j l ( k n + 1 r n ) h l 1 ( k n + 1 r n ) Z n + 1 k n + 1 r [ rj l ( k n + 1 r ) ] r n Z n + 1 k n + 1 r [ rh l 1 ( k n + 1 r ) ] r n ] ( A n + 1 B n + 1 ) ( TM )
[ j l ( k n r n ) h l 1 ( k n r n ) 1 Z n k n r [ rj l ( k n r ) ] r n Z n k n r [ r h l 1 ( k n r ) ] r n ] ( C n D n ) =
[ j l ( k n + 1 r n ) h l 1 ( k n + 1 r n ) Z n + 1 k n + 1 ∂r [ rj l ( k n + 1 r ) ] r n Z n + 1 k n + 1 ∂r [ r h l 1 ( k n + 1 r ) ] r n ] ( C n + 1 D n + 1 ) ( TE )
[ A co B co ] = M l TM · [ A out B out ]
[ C co D co ] = M l TE · [ C out D out ]
E tot = l = 1 i l 4 π ( 2 l + 1 ) 2 [ ( j l + α l 2 h l 1 ) ( X l , + 1 + X l , 1 ) + k × ( j l + β l 2 h l 1 ) ( X l , + 1 X l , 1 ) ]
E tot l , m × ( A out j l ( kr ) + B out h l 1 ( kr ) ) X l , m ( TM )
E tot l , m ( C out j l ( kr ) + D out h l 1 ( kr ) ) X l , m ( TE )
A out / B out = 2 / β l , C out / D out = 2 / α l
B co = ( M l TM ) 2 , 1 A out + ( M l TM ) 2 , 2 B out = 0
D co = ( M l TE ) 2 , 1 C out + ( M l TE ) 2 , 2 D out = 0
β l / 2 = ( M l TM ) 2,1 / ( M l TM ) 2,2
α l / 2 = ( M l TE ) 2,1 / ( M l TE ) 2,2
g l = exp { [ ( l + 1 / 2 ) λ 2 π W 0 ] 2 }
Q tot scatt = σ total π R 2 = 1 k 2 R 2 l = 1 ( 2 l + 1 ) Re [ α l + β l ]
Re ( α or β ) = 2 1 + ( Q · 2 Δ λ / λ 0 ) 2
Q tot scatt = Q bg scatt + 2 l + 1 k 2 R 2 2 1 + ( Q · 2 Δ λ / λ 0 ) 2

Metrics