Abstract

Recently, a simple common-path, two-color interferometer has been used for Doppler-free saturated dispersion spectroscopy of iodine. We have used such a set-up to stabilize a Nd:YAG laser for the first time, to our knowledge. This method requires only a small number of low-cost optical components compared to frequency modulation techniques. We have measured a root Allan variance of 5·10-12 for 0.2 s, and below 5·10-11 for integration times up to 300 s.

© 2004 Optical Society of America

Full Article  |  PDF Article
Related Articles
Absolute frequency stabilization of diode-laser-pumped Nd:YAG lasers to hyperfine transitions in molecular iodine

Ady Arie, Stephan Schiller, Eric K. Gustafson, and Robert L. Byer
Opt. Lett. 17(17) 1204-1206 (1992)

Iodine stabilized laser with three internal mirrors

J. B. Cole and C. F. Bruce
Appl. Opt. 14(6) 1303-1310 (1975)

References

  • View by:
  • |
  • |
  • |

  1. R. Storz, C. Braxmaier, K. Jäck, O. Pradl, and S. Schiller, “Ultrahigh long-term dimensional stability of a Sapphire cryogenic optical resonator,” Opt. Lett. 23, 1031–1033 (1998).
    [Crossref]
  2. A. Arie and R. L. Byer, “Laser heterodyne spectroscopy of 127I2 hyperfine structure near 532 nm,” J. Opt. Soc. Am. B 10, 1990–1997 (1993).
    [Crossref]
  3. K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
    [Crossref]
  4. H. Matsumoto and T. Honda, “Modulation-free iodine-stabilized green YAG laser with a common-path interferometer,” Opt. Commun.,  127, 283–287 (1996).
    [Crossref]
  5. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett.,  27, 1905–1907 (2002).
    [Crossref]
  6. F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
    [Crossref]
  7. A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
    [Crossref]
  8. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54221–230 (1966).
    [Crossref]
  9. P. D. Welch, “The use of fast Fourier transform for estimation of power spectra: A method based on time averaging over short, modified periodogramms,” IEEE Trans. Audio and Electroacoust. AU-15, 70–73(1967)
    [Crossref]

2003 (1)

K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
[Crossref]

2002 (1)

2000 (1)

F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
[Crossref]

1998 (1)

1996 (1)

H. Matsumoto and T. Honda, “Modulation-free iodine-stabilized green YAG laser with a common-path interferometer,” Opt. Commun.,  127, 283–287 (1996).
[Crossref]

1993 (1)

1972 (1)

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[Crossref]

1967 (1)

P. D. Welch, “The use of fast Fourier transform for estimation of power spectra: A method based on time averaging over short, modified periodogramms,” IEEE Trans. Audio and Electroacoust. AU-15, 70–73(1967)
[Crossref]

1966 (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54221–230 (1966).
[Crossref]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54221–230 (1966).
[Crossref]

Arie, A.

Braxmaier, C.

Byer, R. L.

Close, J. D.

Gray, M. B.

Honda, T.

H. Matsumoto and T. Honda, “Modulation-free iodine-stabilized green YAG laser with a common-path interferometer,” Opt. Commun.,  127, 283–287 (1996).
[Crossref]

Hong, F.-L.

F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
[Crossref]

Jäck, K.

Lassila, A.

K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
[Crossref]

Matsumoto, H.

F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
[Crossref]

H. Matsumoto and T. Honda, “Modulation-free iodine-stabilized green YAG laser with a common-path interferometer,” Opt. Commun.,  127, 283–287 (1996).
[Crossref]

Merimaa, M.

K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
[Crossref]

Nyholm, K.

K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
[Crossref]

Onae, A.

F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
[Crossref]

Pradl, O.

Robins, N. P.

Schiller, S.

Shaddock, D. A.

Slagmolen, B. J. J.

Storz, R.

Wallard, A. J.

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[Crossref]

Welch, P. D.

P. D. Welch, “The use of fast Fourier transform for estimation of power spectra: A method based on time averaging over short, modified periodogramms,” IEEE Trans. Audio and Electroacoust. AU-15, 70–73(1967)
[Crossref]

IEEE Trans. Audio and Electroacoust. (1)

P. D. Welch, “The use of fast Fourier transform for estimation of power spectra: A method based on time averaging over short, modified periodogramms,” IEEE Trans. Audio and Electroacoust. AU-15, 70–73(1967)
[Crossref]

IEEE Trans. on Instr. and Meas. (1)

K. Nyholm, M. Merimaa, and A. Lassila, “Frequency stabilization of a diode-pumped Nd:YAG laser at 532 nm to iodine by using third-harmonic technique,” IEEE Trans. on Instr. and Meas. 52, 284–287 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. E: Scient. Instr. (1)

A. J. Wallard, “Frequency stabilization of helium-neon laser by saturated absorption in iodine vapour,” J. Phys. E: Scient. Instr. 5, 926–930 (1972).
[Crossref]

Jpn. J. Appl. Phys. (1)

F.-L. Hong, A. Onae, and H. Matsumoto, “Modulation-free saturated dispersion spectroscopy of I2 using a common-path two-colour interferometer with a Nd:YAG laser,” Jpn. J. Appl. Phys. 39, 1918–1919 (2000).
[Crossref]

Opt. Commun. (1)

H. Matsumoto and T. Honda, “Modulation-free iodine-stabilized green YAG laser with a common-path interferometer,” Opt. Commun.,  127, 283–287 (1996).
[Crossref]

Opt. Lett. (2)

Proc. IEEE (1)

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54221–230 (1966).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of frequency stabilized Nd:YAG laser with a common-path, two-color interferometer. For further details see text.

Fig. 2.
Fig. 2.

Bandpass-filtered modulation-free dispersion signal of the a 1 component of the R(56)32-0 iodine line.

Fig. 3.
Fig. 3.

Low-pass-filtered error signals of the R(56)32-0 iodine line for frequency stabilization.

Fig. 4.
Fig. 4.

Time series of the beat frequency of the stabilized and unstabilized Nd:YAG laser (a). Stabilized laser frequency measurement on a fine frequency scale (b).

Fig. 5.
Fig. 5.

Linear spectral density (a) and root Allan variance (b) of the stabilized and unstabilized laser frequency.

Metrics