Abstract

We analyze the spectral properties of resonant transmission of light through a sub-wavelength slit in a metal film. We show that the enhanced transmission can be understood in terms of interfering surface-wave-like modes propagating in the slit. We characterize the effect of geometrical and material properties of the slit on the transmission spectrum. Furthermore, we show that the wavelength of the transmission resonance strongly depends on the surrounding medium. This effect may be utilized in sensors, imaging, and the detection of, e.g. biomolecules.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667�??669 (1998).
    [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, �??Enhanced light transmission through a single subwavelength aperture,�?? Opt. Lett. 26, 1972�??1974 (2001).
    [CrossRef]
  3. F. Yang and J. R. Sambles, �??Resonant Transmission of Microwaves through a Narrow Metallic Slit,�?? Phys. Rev. Lett. 89, 063901 (2002).
    [CrossRef] [PubMed]
  4. P.-K. Wei, H.-L. Chou, and W.-S. Fann, �??Optical near field in nanometallic slits,�?? Opt. Express 10, 1418�??1424 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1418">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-24-1418</a>
    [CrossRef] [PubMed]
  5. B. Dragnea, J. M. Szarko, S. Kowarik, T. Weimann, J. Feldmann, and S. R. Leone, �??Near-Field Surface Plasmon Excitation on Structured Gold Films,�?? Nano Lett. 3, 3�??7 (2003).
    [CrossRef]
  6. U. Schröter and D. Heitmann, �??Surface-plasmon-enhanced transmission through metallic gratings,�?? Phys. Rev. B58, 15419�??15421 (1998).
    [CrossRef]
  7. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, �??Transmission Resonances on Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 83, 2845�??2848 (1999).
    [CrossRef]
  8. E. Popov, M. Nevière, S. Enoch, and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62, 16100�??16108 (2000).
    [CrossRef]
  9. L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, �??Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,�?? Phys. Rev. Lett. 86, 1110�??1113 (2001).
    [CrossRef] [PubMed]
  10. L. Martín-Moreno, F . J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114�??1117 (2001).
    [CrossRef] [PubMed]
  11. Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, �??One-mode model and Airy-like formulae for one-dimensional metallic gratings,�?? J. Opt. A: Pure Appl. Opt. 2, 48�??51 (2000).
    [CrossRef]
  12. S. Astilean, Ph. Lalanne, and M. Palamaru, �??Light transmission through metallic channels much smaller than the wavelength,�?? Opt. Commun. 175, 265�??273 (2000).
    [CrossRef]
  13. Q. Cao and Ph. Lalanne, �??Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 88, 057403 (2002).
    [CrossRef] [PubMed]
  14. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, �??Strong discontinuities in the complex photonic band structure of transmission metallic gratings,�?? Phys. Rev. B 63, 033107 (2001).
    [CrossRef]
  15. M. M. Treacy, �??Dynamical diffraction in metallic optical gratings,�?? Appl. Phys. Lett. 75, 606�??608 (1999).
    [CrossRef]
  16. M. M. Treacy, �??Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,�?? Phys. Rev. B 66, 195105 (2002).
    [CrossRef]
  17. Y. Takakura, �??Optical Resonance in a Narrow Slit in a Thick Metallic Screen,�?? Phys. Rev. Lett. 86, 5601�??5603 (2001).
    [CrossRef] [PubMed]
  18. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661�??4663 (2002).
    [CrossRef]
  19. F. J. García-Vidal, H. J. Lezec, T.W. Ebbesen and L. Martín-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  20. F. I. Baida, D. Van Labeke, and B. Guizal, �??Enhanced Confined Light Transmission by Single Subwavelength Apertures in Metallic Films,�?? Appl. Opt. 42, 6811�??6815 (2003).
    [CrossRef] [PubMed]
  21. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, �??Light transmission through a subwavelength slit: Waveguiding and optical vortices,�?? Phys. Rev. E 67, 036608 (2003).
    [CrossRef]
  22. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, �??Creation and annihilation of phase singularities near a sub-wavelength slit,�?? Opt. Express 11, 371�??380 (2003), <a Href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-371">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-4-371
    [CrossRef] [PubMed]
  23. W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824�??830 (2003).
    [CrossRef] [PubMed]
  24. A. V. Zayats and I. I. Smolyaninov, �??Near-field photonics: surface plasmon polaritons and localized surface plasmons,�?? J. Opt. A: Pure Appl. Opt. 5, S16�??S50 (2003).
    [CrossRef]
  25. J. Homola, S. S. Yee, and G. Gauglitz, �??Surface plasmon resonance sensors: review,�?? Sensors and Actuators B 54, 3�??15 (1999).
    [CrossRef]
  26. J. J. Mock, D. R. Smith, and S. Schultz, �??Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,�?? Nano Lett. 3, 485�??491 (2003).
    [CrossRef]
  27. A. D. McFarland and R. P. Van Duyne, �??Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity,�?? Nano Lett. 3, 1057�??1062 (2003).
    [CrossRef]
  28. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, �??A single gold particle as a probe for apertureless scanning near-field optical microscopy,�?? J. Microsc. 202, 72�??76 (2001).
    [CrossRef] [PubMed]
  29. M. Moskovits, �??Surface-enhanced spectroscopy,�?? Rev. Mod. Phys. 57, 783�??826 (1985).
    [CrossRef]
  30. D. Maystre, �??Integral Methods,�?? in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 63�??100.
    [CrossRef]
  31. M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).
  32. C. M. Kelso, P. D. Flammer, J. A. DeSanto, and R. T. Collins, �??Integral equations applied to wave propagation in two dimensions: modeling the tip of a near-field scanning optical microscope,�?? J. Opt. Soc. Am. A 18, 1993�??2001 (2001).
    [CrossRef]
  33. J. Wiersig, �??Boundary element method for resonances in dielectric microcavities,�?? J. Opt. A: Pure Appl. Opt. 5, 53�??60 (2003).
    [CrossRef]
  34. P. A. Knipp and T. L. Reinecke, �??Boundary-element method for the calculation of electronic states in semiconductor nanostructures,�?? Phys. Rev. B 54, 1880�??1891 (1996).
    [CrossRef]
  35. L. Ram-Mohan and L. Ramdas Finite Element and Boundary Element Applications in Quantum Mechanics (Oxford University Press, Oxford, UK, 2002).
  36. P. B. Johnson and R. W. Christy, �??Optical Constants of the Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
    [CrossRef]
  37. I. P. Kaminow, W. L. Mammel, and H. P.Weber, �??Metal-Clad Optical Waveguides: Analytical and Experimental Study,�?? Appl. Opt. 13, 396�??405 (1974).
    [CrossRef] [PubMed]
  38. E. W. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).

Appl. Opt. (2)

Appl. Phys. Lett. (2)

M. M. Treacy, �??Dynamical diffraction in metallic optical gratings,�?? Appl. Phys. Lett. 75, 606�??608 (1999).
[CrossRef]

A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, �??Gratingless enhanced microwave transmission through a subwavelength aperture in a thick metal plate,�?? Appl. Phys. Lett. 81, 4661�??4663 (2002).
[CrossRef]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, �??A single gold particle as a probe for apertureless scanning near-field optical microscopy,�?? J. Microsc. 202, 72�??76 (2001).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt. (3)

J. Wiersig, �??Boundary element method for resonances in dielectric microcavities,�?? J. Opt. A: Pure Appl. Opt. 5, 53�??60 (2003).
[CrossRef]

A. V. Zayats and I. I. Smolyaninov, �??Near-field photonics: surface plasmon polaritons and localized surface plasmons,�?? J. Opt. A: Pure Appl. Opt. 5, S16�??S50 (2003).
[CrossRef]

Ph. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Möller, �??One-mode model and Airy-like formulae for one-dimensional metallic gratings,�?? J. Opt. A: Pure Appl. Opt. 2, 48�??51 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

B. Dragnea, J. M. Szarko, S. Kowarik, T. Weimann, J. Feldmann, and S. R. Leone, �??Near-Field Surface Plasmon Excitation on Structured Gold Films,�?? Nano Lett. 3, 3�??7 (2003).
[CrossRef]

J. J. Mock, D. R. Smith, and S. Schultz, �??Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles,�?? Nano Lett. 3, 485�??491 (2003).
[CrossRef]

A. D. McFarland and R. P. Van Duyne, �??Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity,�?? Nano Lett. 3, 1057�??1062 (2003).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, �??Surface plasmon subwavelength optics,�?? Nature 424, 824�??830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, �??Extraordinary optical transmission through sub-wavelength hole arrays,�?? Nature 391, 667�??669 (1998).
[CrossRef]

Opt. Commun. (1)

S. Astilean, Ph. Lalanne, and M. Palamaru, �??Light transmission through metallic channels much smaller than the wavelength,�?? Opt. Commun. 175, 265�??273 (2000).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (6)

P. B. Johnson and R. W. Christy, �??Optical Constants of the Noble Metals,�?? Phys. Rev. B 6, 4370�??4379 (1972).
[CrossRef]

P. A. Knipp and T. L. Reinecke, �??Boundary-element method for the calculation of electronic states in semiconductor nanostructures,�?? Phys. Rev. B 54, 1880�??1891 (1996).
[CrossRef]

M. M. Treacy, �??Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,�?? Phys. Rev. B 66, 195105 (2002).
[CrossRef]

U. Schröter and D. Heitmann, �??Surface-plasmon-enhanced transmission through metallic gratings,�?? Phys. Rev. B58, 15419�??15421 (1998).
[CrossRef]

E. Popov, M. Nevière, S. Enoch, and R. Reinisch, �??Theory of light transmission through subwavelength periodic hole arrays,�?? Phys. Rev. B 62, 16100�??16108 (2000).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, �??Strong discontinuities in the complex photonic band structure of transmission metallic gratings,�?? Phys. Rev. B 63, 033107 (2001).
[CrossRef]

Phys. Rev. E (1)

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, �??Light transmission through a subwavelength slit: Waveguiding and optical vortices,�?? Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Phys. Rev. Lett (1)

Q. Cao and Ph. Lalanne, �??Negative Role of Surface Plasmons in the Transmission of Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 88, 057403 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (6)

Y. Takakura, �??Optical Resonance in a Narrow Slit in a Thick Metallic Screen,�?? Phys. Rev. Lett. 86, 5601�??5603 (2001).
[CrossRef] [PubMed]

L. Salomon, F. Grillot, A. Zayats, and F. de Fornel, �??Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,�?? Phys. Rev. Lett. 86, 1110�??1113 (2001).
[CrossRef] [PubMed]

L. Martín-Moreno, F . J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, �??Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,�?? Phys. Rev. Lett. 86, 1114�??1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, �??Transmission Resonances on Metallic Gratings with Very Narrow Slits,�?? Phys. Rev. Lett. 83, 2845�??2848 (1999).
[CrossRef]

F. J. García-Vidal, H. J. Lezec, T.W. Ebbesen and L. Martín-Moreno, �??Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit,�?? Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

F. Yang and J. R. Sambles, �??Resonant Transmission of Microwaves through a Narrow Metallic Slit,�?? Phys. Rev. Lett. 89, 063901 (2002).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Moskovits, �??Surface-enhanced spectroscopy,�?? Rev. Mod. Phys. 57, 783�??826 (1985).
[CrossRef]

Sensors and Actuators B (1)

J. Homola, S. S. Yee, and G. Gauglitz, �??Surface plasmon resonance sensors: review,�?? Sensors and Actuators B 54, 3�??15 (1999).
[CrossRef]

Other (4)

D. Maystre, �??Integral Methods,�?? in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, Berlin, 1980), pp. 63�??100.
[CrossRef]

M. Nieto-Vesperinas, Scattering and Diffraction in Physical Optics (Wiley, New York, 1991).

L. Ram-Mohan and L. Ramdas Finite Element and Boundary Element Applications in Quantum Mechanics (Oxford University Press, Oxford, UK, 2002).

E. W. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Model geometry of a nanoslit of width d in a metal film of thickness h. A p-polarized (transverse magnetic) plane wave is normally incident on the structure.

Fig. 2.
Fig. 2.

Transmittance spectrum of a 40 nm wide slit in a gold film with a thickness of 200 nm.

Fig. 3.
Fig. 3.

Transmittance spectra for a 40 nm wide slit in aluminum, gold and silver films with a thickness of 350 nm.

Fig. 4.
Fig. 4.

Intensity distribution (|E|2) around a 40 nm wide slit in a gold film with thickness of 200 nm: (a) off resonance (λ=600 nm), and (b) at resonance (λ=950 nm). The intensity is normalized to the incident field intensity. The scale in (b) is different from that in (a) so that the details of the intensity distribution can be more clearly seen. The time-averaged Poynting vectors are shown as arrows. The insets in (a) and (b) show the intensity distribution near the center of the slit (y≈100 nm). The material interface is shown as dashed line.

Fig. 5.
Fig. 5.

Transmittance spectra for a 40 nm wide slit in gold films of various thicknesses. 400 600 800 1000 1200 1400 1600

Fig. 6.
Fig. 6.

Transmittance spectra for various slit widths in a gold film with a thickness of 200 nm.

Fig. 7.
Fig. 7.

Transmittance spectra for a 15 nm wide slit in a 200 nm thick gold film as the material within the slit is varied.

Fig. 8.
Fig. 8.

Resonance peak positions as a function of index of refraction. The squares correspond to calculated data for different materials within the slit and the line is a linear fit to the data.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

( 2 + k 0 2 n 2 ) ψ ( r ) = 0 ,
ψ l ( r ) = s l { G l ( r , r ) [ n ̂ · ψ l ( r ) ] ψ l ( r ) [ n ̂ · G l ( r , r ) ] } d s ,
G l ( r , r ) = i 4 H 0 ( 1 ) ( k 0 n l r r ) ,
T slit S n d A + film ( S n S n ( trans ) ) d A slit S n ( inc ) d A ,

Metrics