Abstract

We demonstrate a novel technique for narrow bandwidth and highly improved lateral mode operation of a high-power broad area laser diode. The system uses simultaneous feedback from the first diffracted order and the zeroth reflected order of a diffraction grating. The two feedback paths lead to simultaneously improvement of the spectral and spatial properties of the laser diode. The laser system operates in the well-known asymmetric double-lobed far field pattern with the larger lobe being extracted as the output. The bandwidth of the output beam is measured to 0.07 nm, which corresponds to an improvement of a factor of 17 compared to the bandwidth of the freely running laser. The output from the system contains 54% of the energy reaching the grating, or 75% of the power reflected into the zeroth order. The improvements in both the spatial and temporal coherence opens the possibility of using this laser system in applications such as frequency doubling and pumping of optical parametric oscillators.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, �??Coherent Light Emission From GaAs Junctions,�?? Phys. Rev. Lett. 9, 366-368 (1962).
    [CrossRef]
  2. M. I. Nathan,W. P. Dumke, G. Burns, F. H. Dill jr., and G. Lasher, �??Stimulated Emission of Radiation from GaAs p-n Junctions,�?? Appl. Phys. Lett. 1, 62-64 (1962).
    [CrossRef]
  3. T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. Whorter, and H. J. Ziegler, �??Semiconductor maser of GaAs,�?? Appl. Phys. Lett. 1, 91-92 (1962).
    [CrossRef]
  4. G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).
  5. J.-M. Verdiell, H. Rajbenbach, and J. P. Huignard, �??Array modes of multiple-stripe diode lasers: A broad-area mode coupling approach,�?? J. Appl. Phys. 66, 1466-1468 (1989).
    [CrossRef]
  6. J.-M. Verdiell and R. Frey, �??A Broad-Area Mode-Coupling Model for Multiple Stripe Semiconductor Lasers,�?? IEEE J. Quantum Electron. 26, 270-279 (1990).
    [CrossRef]
  7. G. L. Abbas, S. Yang, V. W. S. Chang, and J. G. Fujimoto, �??Injection behavior of high-power broad-area diode lasers ,�?? Opt. Lett. 12, 605-607 (1987).
    [CrossRef] [PubMed]
  8. L. Goldberg and M. K. Chun, �??Injection locking characteristics of a 1 W broad stripe laser diode,�?? Appl. Phys. Lett. 53, 1900-1902 (1988).
    [CrossRef]
  9. S. MacCormack, J. Feinberg, and M. H. Garrett, �??Injection locking a laser-diode array with a phase-conjugate beam,�?? Opt. Lett. 19, 120-122 (1994).
    [CrossRef] [PubMed]
  10. C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, and A. Dienes, �??High power with high efficiency in a narrow single-lobed beam from a laser array in an external cavity,�?? Appl. Phys. Lett. 50, 1465-1467 (1987).
    [CrossRef]
  11. R. M. R. Pillai and E. M. Garmire, �??Paraxial-misalignment insensitive external-cavity semiconductor-laser array emitting near-diffraction limited single-lobed beam,�?? IEEE J. Quantum Electron. 32, 996-1008 (1996).
    [CrossRef]
  12. M. Chi, Optics and Plasma Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark (Personal communication, 2004).
  13. V. Raab and R. Menzel, �??External resonator design for high-power laser diodes that yields 400 mW of TEM00 power,�?? Opt. Lett. 27, 167-169 (2002).
    [CrossRef]
  14. E. Samsøe, P. Malm, P. E. Andersen, P. M. Petersen, and S. Andersson-Engels, �??Improvement of brightness and output power of high-power laser diodes in the visible spectral region,�?? Opt. Commun. 219, 369-375 (2003).
    [CrossRef]
  15. B. Thestrup, M. Chi, B. Sass, and P. M. Petersen,�??High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback,�?? Appl. Phys. Lett. 82, 680-682 (2003).
    [CrossRef]
  16. K. C. Harvey and C. J. Myatt, �??External-cavity laser using a grazing-incidence diffraction grating,�?? Opt. Lett. 16, 910-912 (1991).
    [CrossRef] [PubMed]
  17. I. A. Nelson, B. Chann, and T. G. Walker, �??Spin-exchange optical pumping using a frequency-narrowed high power diode laser,�?? Appl. Phys. Lett. 79, 1356-1358 (2000).
    [CrossRef]
  18. S. M. MacCormack and J. Feinberg, �??High-brightness output from a laser-diode array coupled to a phase-conjugating mirror,�?? Opt. Lett. 18, 211-213 (1993).
    [CrossRef] [PubMed]
  19. M. Løbel, P. M. Petersen, and P. M. Johansen, �??Single-mode operation of a laser-diode array with frequency-selective phase-conjugate feedback,�?? Opt. Lett. 23, 825-827 (1998).
    [CrossRef]
  20. M. Løbel, P. M. Petersen, and P. M. Johansen, �??Tunable single-mode operation of a high-power laser-diode array by use of an external cavity with a grating and a photorefractive phase-conjugate mirror,�?? J. Opt. Soc. Am. B 15, 2000-2005 (1998).
    [CrossRef]
  21. M. G. Littman and H. J. Metcalf, �??Spectrally narrow pulsed dye laser without beam expander,�?? Appl. Opt. 17, 2224-2227 (1978).
    [CrossRef] [PubMed]
  22. P. M. Fishbane, S. Gasiorowicz, and S. T. Thornton, Physics for scientists and engineers, extended version (Prentice-Hall International Editions, New Jersey, 1993).
  23. R. Diehl, High-Power Diode Lasers, Fundamentals, Technology, Applications (Springer-Verlag, Berlin, 2000).
    [CrossRef]
  24. J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H. G. Hänsel, R. Hülsewede, A. Knauer, W. Pittroff, R. Staske, M. Schröder, H. Wenzel, M. Weyers, and G. Tränkle, �??High-Power 810-nm GaAsP-AlGaAs Diode Lasers With Narrow Beam Divergence,�?? IEEE J. Select. Topics Quantum Electron. 7, 334-339 (2001).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (6)

M. I. Nathan,W. P. Dumke, G. Burns, F. H. Dill jr., and G. Lasher, �??Stimulated Emission of Radiation from GaAs p-n Junctions,�?? Appl. Phys. Lett. 1, 62-64 (1962).
[CrossRef]

T. M. Quist, R. H. Rediker, R. J. Keyes, W. E. Krag, B. Lax, A. L. Whorter, and H. J. Ziegler, �??Semiconductor maser of GaAs,�?? Appl. Phys. Lett. 1, 91-92 (1962).
[CrossRef]

C. J. Chang-Hasnain, J. Berger, D. R. Scifres, W. Streifer, J. R. Whinnery, and A. Dienes, �??High power with high efficiency in a narrow single-lobed beam from a laser array in an external cavity,�?? Appl. Phys. Lett. 50, 1465-1467 (1987).
[CrossRef]

L. Goldberg and M. K. Chun, �??Injection locking characteristics of a 1 W broad stripe laser diode,�?? Appl. Phys. Lett. 53, 1900-1902 (1988).
[CrossRef]

B. Thestrup, M. Chi, B. Sass, and P. M. Petersen,�??High brightness laser source based on polarization coupling of two diode lasers with asymmetric feedback,�?? Appl. Phys. Lett. 82, 680-682 (2003).
[CrossRef]

I. A. Nelson, B. Chann, and T. G. Walker, �??Spin-exchange optical pumping using a frequency-narrowed high power diode laser,�?? Appl. Phys. Lett. 79, 1356-1358 (2000).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. M. R. Pillai and E. M. Garmire, �??Paraxial-misalignment insensitive external-cavity semiconductor-laser array emitting near-diffraction limited single-lobed beam,�?? IEEE J. Quantum Electron. 32, 996-1008 (1996).
[CrossRef]

J.-M. Verdiell and R. Frey, �??A Broad-Area Mode-Coupling Model for Multiple Stripe Semiconductor Lasers,�?? IEEE J. Quantum Electron. 26, 270-279 (1990).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

J. Sebastian, G. Beister, F. Bugge, F. Buhrandt, G. Erbert, H. G. Hänsel, R. Hülsewede, A. Knauer, W. Pittroff, R. Staske, M. Schröder, H. Wenzel, M. Weyers, and G. Tränkle, �??High-Power 810-nm GaAsP-AlGaAs Diode Lasers With Narrow Beam Divergence,�?? IEEE J. Select. Topics Quantum Electron. 7, 334-339 (2001).
[CrossRef]

J. Appl. Phys. (1)

J.-M. Verdiell, H. Rajbenbach, and J. P. Huignard, �??Array modes of multiple-stripe diode lasers: A broad-area mode coupling approach,�?? J. Appl. Phys. 66, 1466-1468 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. Samsøe, P. Malm, P. E. Andersen, P. M. Petersen, and S. Andersson-Engels, �??Improvement of brightness and output power of high-power laser diodes in the visible spectral region,�?? Opt. Commun. 219, 369-375 (2003).
[CrossRef]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, �??Coherent Light Emission From GaAs Junctions,�?? Phys. Rev. Lett. 9, 366-368 (1962).
[CrossRef]

Other (4)

G. P. Agrawal, and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, New York, 1993).

M. Chi, Optics and Plasma Research Department, Risø National Laboratory, DK-4000 Roskilde, Denmark (Personal communication, 2004).

P. M. Fishbane, S. Gasiorowicz, and S. T. Thornton, Physics for scientists and engineers, extended version (Prentice-Hall International Editions, New Jersey, 1993).

R. Diehl, High-Power Diode Lasers, Fundamentals, Technology, Applications (Springer-Verlag, Berlin, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Collimation and generation of image planes (a), side view (b), and top view (c) of experimental setup. BAL: Broad area laser; Li: Collimating lenses; f1,x: Focal length of L1, s1(Li): Distance from object plane to Li; s2(Li): Distance from Li to image plane; FF: Lateral far field plane; FF virtual : Virtual image plane of FF; FF*: Image plane of FF; SF1: Spatial filter in the lateral direction; SF2: Spatial filter in the transverse direction; x, y, z: Lateral, transverse and longitudinal directions, respectively. The shapes of the intensity profiles are outlined in black.

Fig. 2.
Fig. 2.

Intensity profiles in the lateral far field of the double feedback (solid), the single feedback (dashed and dotted, respectively), and the freely running (dash-dotted) BAL.

Fig. 3.
Fig. 3.

Spectrum of the double and single feedback laser. Black spectrum: Double feedback applied; Red spectrum: Feedback from first order applied; Blue spectrum: Feedback from zeroth order applied; Green spectrum: Freely running laser.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 s 1 + 1 s 2 = 1 f
Δ λ = d w m f cos ( θ )

Metrics