Abstract

In this paper we proposed an alternative type of multi-port polarization-independent optical quasi-circulator by using a pair of holographic spatial- and polarization- modules. The prototype is fabricated and experimentally tested. In addition, the operating principles, the characteristics and the performances of this device are discussed. The merits of this design include polarization-independence, compactness, high isolation, low polarization mode dispersion, and easy fabrication. Furthermore, the number of ports can be scaled up easily.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Hecht, Understanding fiber optics (Prentice Hall, New Jersey, 2002), Chap. 14.
  2. J. H. Chen et al. �??Holographic spatial walk-off polarizer and its application to a 4-port polarization-independent optical circulator,�?? Opt. Express 11, 2001-2006 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2001.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-17-2001.</a>
    [CrossRef] [PubMed]
  3. N. Sugimoto et al. �??Waveguide polarization-independent optical circulator,�?? IEEE Photon. Technol. Lett. 11, 355-357 (1999).
    [CrossRef]
  4. L. D. Wang, �??High-isolation polarization-independent optical quasi-circulator with a simple structure,�?? Opt. Lett. 23, 549-551 (1998).
    [CrossRef]
  5. M. Koga, �??Compact quartzless optical quasi-circulator,�?? Electron. Lett. 30, 1438-1440 (1994).
    [CrossRef]
  6. Y. K. Chen et al. �??Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 12, 1394-1396 (2000).
    [CrossRef]
  7. A. V. Tran et al. �??A bidirectional optical add-drop multiplexer with gain using multiport circulators, fiber Bragg gratings, and a single unidirectional optical amplifier,�?? IEEE Photon. Technol. Lett. 15, 975-977 (2003).
    [CrossRef]
  8. D. K. Mynbaev, and L. L. Scheiner, Fiber-optic communications technology (Prentice Hall, New Jersey, 2001), Chap. 6.
  9. Y. Sato and K. Aoyama, �??OTDR in optical transmission systems using Er-doped fiber amplifiers containing optical circulators,�?? IEEE Photon. Technol. Lett. 3, 1001-1003 (1991).
    [CrossRef]
  10. J. Liu and R. T. Chen, �??Path-reversed substrate-guided-wave optical interconnects for wavelength-division demultiplexing,�?? Appl. Opt. 38, 3046-3052 (1999).
    [CrossRef]
  11. R. Shechter, Y. Amitai, and A. A. Friesem, �??Compact wavelength division multiplexers and demultiplexers,�?? Appl. Opt. 41, 1256-1261 (2002).
    [CrossRef] [PubMed]
  12. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).
  13. B. J. Chang, Optical information storage, Proc. SPIE, vol. 177, 71-81 (1979).
    [CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Syst. Tech. J. 48, 2909-2947 (1969).

Electron. Lett.

M. Koga, �??Compact quartzless optical quasi-circulator,�?? Electron. Lett. 30, 1438-1440 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. K. Chen et al. �??Low-crosstalk and compact optical add-drop multiplexer using a multiport circulator and fiber Bragg gratings,�?? IEEE Photon. Technol. Lett. 12, 1394-1396 (2000).
[CrossRef]

A. V. Tran et al. �??A bidirectional optical add-drop multiplexer with gain using multiport circulators, fiber Bragg gratings, and a single unidirectional optical amplifier,�?? IEEE Photon. Technol. Lett. 15, 975-977 (2003).
[CrossRef]

N. Sugimoto et al. �??Waveguide polarization-independent optical circulator,�?? IEEE Photon. Technol. Lett. 11, 355-357 (1999).
[CrossRef]

Y. Sato and K. Aoyama, �??OTDR in optical transmission systems using Er-doped fiber amplifiers containing optical circulators,�?? IEEE Photon. Technol. Lett. 3, 1001-1003 (1991).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

B. J. Chang, Optical information storage, Proc. SPIE, vol. 177, 71-81 (1979).
[CrossRef]

Other

J. Hecht, Understanding fiber optics (Prentice Hall, New Jersey, 2002), Chap. 14.

D. K. Mynbaev, and L. L. Scheiner, Fiber-optic communications technology (Prentice Hall, New Jersey, 2001), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Structure and operation principle of the holographic spatial walk-off polarizer.

Fig. 2.
Fig. 2.

Structure and operation characteristics of the holographic spatial- and polarization- module.

Fig. 3.
Fig. 3.

Structure and operation characteristics of the series connected holographic spatial- and polarization- modules.

Fig. 4.
Fig. 4.

Operation characteristics of the series connected holographic spatial- and polarization- modules when an unpolarized light is shuttled between its two sides.

Fig. 5.
Fig. 5.

Structure and operation principles of the proposed multi-port optical quasi-circulator.

Fig. 6.
Fig. 6.

Structure and operation principles of the proposed multi-port optical quasi-circulator without polarization mode dispersion.

Fig. 7.
Fig. 7.

PBSs and RPs guiding modules for (a) the odd ports; (b) the even ports.

Tables (1)

Tables Icon

Table 1. Associated losses and isolation values a (in Decibels) of a 6-port quasi-circulator with wavelength 1300nm by using (a) our fabricated HSWPs; and (b) ideal HSWPs with anti-reflection coatings and diffraction efficiencies of ηs<1% and ηp>99%.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

[ x s ( 2 n 1 ) x p ( 2 n 1 ) ] = [ 2 ( n 1 ) L 2 ( 1 n ) L ] , ( for an odd port )
[ x s ( 2 n ) x p ( 2 n ) ] = [ 2 L 2 ( 2 n ) L ] . ( for an even port )
[ x PBS ( 2 n 1 ) z PBS ( 2 n 1 ) x RP ( 2 n 1 ) z RP ( 2 n 1 ) ] = [ 2 ( n 1 ) L ( 2 n 4 ) L 2 ( 1 n ) L ( 2 n 4 ) L ] , ( for an odd port )
[ x PBS ( 2 n ) z PBS ( 2 n ) x RP ( 2 n ) z RP ( 2 n ) ] = [ 2 n L ( 2 n + 4 ) L 2 ( 2 n ) L ( 2 n + 4 ) L ] , ( for an even port )
[ x M ( 2 n 1 ) z M ( 2 n 1 ) ] = [ 2 ( 1 n ) L ( 2 n 4 ) L ] , ( for an odd port )
[ x M ( 2 n ) z M ( 2 n ) ] = [ 2 n L ( 2 n + 4 ) L ] , ( for an even port )

Metrics