Abstract

Multiple low index particles (micrometer-sized ultrasound contrast agent), have been optically trapped using a 4×4 Laguerre-Gaussian trap array. The trapping efficiency of the Laguerre-Gaussian arrangement was measured using a Stokes’ flow approach whereby the critical relative fluid velocity required to remove particles from the optical trap was measured. The dependence of trapping efficiency on beam power was also explored and the optimum beam parameters were identified. Finally, the utility of the array as a selective filter was demonstrated by tweezing multiple low-index particles from a population exhibiting an inherent distribution in size. This procedure represents a unique remote non-contact process that may have significant applicability throughout the fields of biophysics and biotechnology.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Ashkin J.M. Dziedzic, J.E. Bjorkholm & S. Chu, �??Observation of a single beam gradient force optical trap for dielectric particles,�?? Opt. Lett.11, 288 (1986)
    [CrossRef] [PubMed]
  2. S. Sato & H. Inaba, �??Achievement of laser fusion of biological cells using UV pulsed laser beams,�?? Appl. Phys. B 54, 531 (1992)
    [CrossRef]
  3. H. Liang, W.H. Wright, C.L. Rieder, E.D. Salmon, G. Proteta, J. Andrews, Y.G. Liu, G.J. Sonek, M. Berns, �??Micromanipulation of chromosomes in PtK2 cells using laser microsurgery in combination with laser induced optical forces,�?? Experimental Cell Res. 204, 110 (1993)
    [CrossRef]
  4. M.P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101 (2002)
    [CrossRef] [PubMed]
  5. V.Garces-Chavez, D.McGloin, H.Melville, W.Sibbett, K.Dholakia, �??Simultaneous micromanipulation in multiple planes using a self reconstructing light beam,�?? Nature 419, 145 (2002)
    [CrossRef] [PubMed]
  6. K.T. Gahagan, G.A. Swartzlander, �??Simultaneous trapping of low index and high index microparticles observed with an optical vortex trap,�?? J. Opt. Soc. Am. B 16, 533(1999)
    [CrossRef]
  7. K.T. Gahagan, G.A. Swartzlander, �??Trapping of low index particles in an optical vortex,�?? J. Opt. Soc. Am. B 15, 524 (1998)
    [CrossRef]
  8. M.P. MacDonald, L. Paterson, W. Sibbett, K. Dholakia & A. Riches, �??Trapping and manipulation of low index particles in a 2D interferometric trap,�?? Opt. Lett. 26, 863 (2001)
    [CrossRef]
  9. P.J. Rodrigo, R.E. Eriksen, V.R. Daria & J. Gluckstad, �??Shack Hartman multiple beam optical tweezers,�?? Opt. Express 11, 208 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-208">http://ww.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-208</a>.
    [CrossRef] [PubMed]
  10. E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets & D. Grier, �??Computer generated holographic optical tweezer arrays,�?? Rev. Sci. Instruments 72, 1810 (2001)
    [CrossRef]
  11. J. Voros, �??The density and refractive index of absorbing protein layers,�?? (to be published in Biophysical Journal (2004))
  12. N.B. Simpson, L. Allen, M.J. Padgett �??Optical tweezers with increased axial trapping efficiency,�?? J. Mod. Opt. 45, 1943 (1998)
    [CrossRef]
  13. A.T. O�??Neill, M.J. Padgett, �??Axial and lateral trapping efficiency of Laguerre Gaussian modes in inverted optical tweezers,�?? Opt. Commun. 193, 45 (2001)
    [CrossRef]
  14. W.H. Wright, G.J. Sonek, M.W. Berns, �??Parametric Study of the forces on microspheres held by optical tweezers,�?? Appl. Opt. 33, 1736 (1994)
    [CrossRef]
  15. K.T. Gahagan, G.A. Swartzlander. �??Optical vortex trapping of particles,�?? Opt. Lett. 21, 827 (1996)
    [CrossRef] [PubMed]
  16. R.C. Gauthier, �??Laser trapping properties of dual component spheres,�?? Appl. Opt. 41, 7135 (2002)
    [CrossRef] [PubMed]

Appl. Opt. (2)

W.H. Wright, G.J. Sonek, M.W. Berns, �??Parametric Study of the forces on microspheres held by optical tweezers,�?? Appl. Opt. 33, 1736 (1994)
[CrossRef]

R.C. Gauthier, �??Laser trapping properties of dual component spheres,�?? Appl. Opt. 41, 7135 (2002)
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. Sato & H. Inaba, �??Achievement of laser fusion of biological cells using UV pulsed laser beams,�?? Appl. Phys. B 54, 531 (1992)
[CrossRef]

Biophysical Journal (1)

J. Voros, �??The density and refractive index of absorbing protein layers,�?? (to be published in Biophysical Journal (2004))

Experimental Cell Res. (1)

H. Liang, W.H. Wright, C.L. Rieder, E.D. Salmon, G. Proteta, J. Andrews, Y.G. Liu, G.J. Sonek, M. Berns, �??Micromanipulation of chromosomes in PtK2 cells using laser microsurgery in combination with laser induced optical forces,�?? Experimental Cell Res. 204, 110 (1993)
[CrossRef]

J. Mod. Opt. (1)

N.B. Simpson, L. Allen, M.J. Padgett �??Optical tweezers with increased axial trapping efficiency,�?? J. Mod. Opt. 45, 1943 (1998)
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

V.Garces-Chavez, D.McGloin, H.Melville, W.Sibbett, K.Dholakia, �??Simultaneous micromanipulation in multiple planes using a self reconstructing light beam,�?? Nature 419, 145 (2002)
[CrossRef] [PubMed]

Opt. Commun. (1)

A.T. O�??Neill, M.J. Padgett, �??Axial and lateral trapping efficiency of Laguerre Gaussian modes in inverted optical tweezers,�?? Opt. Commun. 193, 45 (2001)
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Rev. Sci. Instruments (1)

E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets & D. Grier, �??Computer generated holographic optical tweezer arrays,�?? Rev. Sci. Instruments 72, 1810 (2001)
[CrossRef]

Science (1)

M.P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, K. Dholakia, �??Creation and manipulation of three-dimensional optically trapped structures,�?? Science 296, 1101 (2002)
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of tweezing set-up. L – lens, M – Mirror, H1 – LG hologram, BG – IR filter, H2 – 4×4 hologram.

Fig. 2.
Fig. 2.

(a) The intensity distribution at the focal plane of the objective on illuminating the hexadeca DOE with a standard Gaussian beam. (b) The intensity distribution on illuminating the DOE with an LG l=3 beam (i.e. after insertion of H1 into the optical path. Each annulus has the potential to trap a low index particle of suitable diameter. (c) A binary level version of the pattern used to produce the 4×4 spot intensity distribution of (a) and (b). The black regions shift the phase by π radians.

Fig. 3.
Fig. 3.

Logarithm of the critical velocity required to displace both high and low index particles from the optical trap versus the laser power. The effect of location is also apparent: in both instances, there is a marked increase in critical velocity when the particles are trapped away from a solid surface.

Fig. 4.
Fig. 4.

Graph of critical velocity required to laterally displace the CA particle from the optical trap, versus the laser power (and equivalent pumping current). There is no enhancement in trapping efficiency beyond laser powers of around 30mW as the effects of scattering push the particles further below the trap plane.

Fig. 5.
Fig. 5.

Photomicrographs demonstrating optical manipulation of 8 micro-bubbles simultaneously out of the plane of the top of the sample. In the left-most image, the trap array is established within a population of the contrast agent micro-bubbles, trapping 8 particles in the process. In the subsequent images, the array plane is physically moved in the z-direction so that trapped particles are selectively and simultaneously removed away from the rest of the population.

Tables (1)

Tables Icon

Table 1. Average values of Q-lateral and Q-axial for CA micro-bubbles optically trapped in a Laguerre-Gaussian l=3 beam, as calculated using equations (4) and (5).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

r max = ω l 2
F trap = Q n o P c
F drag = 3 π η v d
Q lateral = c n o 3 π η v c d P
F min = π 6 ( ρ p ρ m ) d 3 g + 2 k T d

Metrics