Abstract

Abstract A newly developed optical parametric oscillator (OPO) based differential absorption lidar (DIAL) system has been applied to the monitoring of atomic mercury emissions at several chlor-alkali plants in Europe. The versatility of the system is illustrated by measured time series of mercury flux and movies of vertical and horizontal concentration distributions, which yield important input parameters for the environmental community. Long term measurements of the resonance absorption of mercury at 253.65 nm poses special demands, i.e. long term stability, on the light source that often have been hard to fulfill, in different respects, for standard OPO and dye laser based systems. Here, approaches to meet these demands are presented.

© 2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Versatile mobile lidar system for environmental monitoring

Petter Weibring, Hans Edner, and Sune Svanberg
Appl. Opt. 42(18) 3583-3594 (2003)

Atmospheric atomic mercury monitoring using differential absorption lidar techniques

Hans Edner, Gregory W. Faris, Anders Sunesson, and Sune Svanberg
Appl. Opt. 28(5) 921-930 (1989)

DIAL techniques for the control of sulfur dioxide emissions

Anna-Lena Egeback, Kent A. Fredriksson, and Hans M. Hertz
Appl. Opt. 23(5) 722-729 (1984)

References

  • View by:
  • |
  • |
  • |

  1. W. H. Schroeder and J. Munthe, “Atmospheric mercury - an overview,” Atmos. Environ. 32 No. 5, 809 (1998).
    [Crossref]
  2. K. von Rein and L. D. Hylander, “Experiences from phasing out the use of mercury in Sweden,” Reg. Environ. Change 1, 126 (2000).
    [Crossref]
  3. E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
    [Crossref]
  4. http://www.emecap.com
  5. S. Svanberg, “Differential Absorption Lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed) (Wiley, New York1994).
  6. M. Aldén, H. Edner, and S. Svanberg, “Remote measurements of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7, No. 5, 221 (1982).
    [Crossref] [PubMed]
  7. H. Edner, G. W. Faris, A. Sunesson, and S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, No. 5, 921 (1989).
    [Crossref] [PubMed]
  8. G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
    [Crossref]
  9. P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).
    [Crossref] [PubMed]
  10. P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
    [Crossref]
  11. http://www.tekran.com/2505/2505fea.html
  12. T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
    [Crossref]
  13. U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
    [Crossref]
  14. P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
    [Crossref]
  15. I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
    [Crossref]

2003 (3)

P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).
[Crossref] [PubMed]

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

2002 (1)

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

2001 (1)

E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
[Crossref]

2000 (1)

K. von Rein and L. D. Hylander, “Experiences from phasing out the use of mercury in Sweden,” Reg. Environ. Change 1, 126 (2000).
[Crossref]

1998 (3)

W. H. Schroeder and J. Munthe, “Atmospheric mercury - an overview,” Atmos. Environ. 32 No. 5, 809 (1998).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

1996 (1)

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

1989 (1)

1982 (1)

Aldén, M.

Andersson, M.

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

Baumert, T.

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Björklund, C.

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

Edner, H.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).
[Crossref] [PubMed]

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

H. Edner, G. W. Faris, A. Sunesson, and S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, No. 5, 921 (1989).
[Crossref] [PubMed]

M. Aldén, H. Edner, and S. Svanberg, “Remote measurements of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7, No. 5, 221 (1982).
[Crossref] [PubMed]

Egret, G.

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Faris, G. W.

Ferrara, R.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Fix, A.

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Holst, U.

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

Hössjer, O.

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

Hylander, L. D.

K. von Rein and L. D. Hylander, “Experiences from phasing out the use of mercury in Sweden,” Reg. Environ. Change 1, 126 (2000).
[Crossref]

Lanzillotta, E.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Lindström, T.

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

Munthe, J.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

W. H. Schroeder and J. Munthe, “Atmospheric mercury - an overview,” Atmos. Environ. 32 No. 5, 809 (1998).
[Crossref]

Pacyna, E.G.

E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
[Crossref]

Pacyna, J.M.

E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
[Crossref]

Pirrone, N.

E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
[Crossref]

Poberaj, G.

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Ragnarsson, P.

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

Schroeder, W. H.

W. H. Schroeder and J. Munthe, “Atmospheric mercury - an overview,” Atmos. Environ. 32 No. 5, 809 (1998).
[Crossref]

Sjöholm, M.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Smith, J. N.

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

Sommar, J.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Sunesson, A.

Svanberg, S.

P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).
[Crossref] [PubMed]

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

H. Edner, G. W. Faris, A. Sunesson, and S. Svanberg, “Atmospheric atomic mercury monitoring using differential absorption lidar techniques,” Appl. Opt. 28, No. 5, 921 (1989).
[Crossref] [PubMed]

M. Aldén, H. Edner, and S. Svanberg, “Remote measurements of atmospheric mercury using differential absorption lidar,” Opt. Lett. 7, No. 5, 221 (1982).
[Crossref] [PubMed]

S. Svanberg, “Differential Absorption Lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed) (Wiley, New York1994).

von Rein, K.

K. von Rein and L. D. Hylander, “Experiences from phasing out the use of mercury in Sweden,” Reg. Environ. Change 1, 126 (2000).
[Crossref]

Wängberg, I.

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Weibring, P.

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

P. Weibring, H. Edner, and S. Svanberg, “Versatile Mobile lidar System for Environmental Monitoring,” Appl. Opt. 42, 3583 (2003).
[Crossref] [PubMed]

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

Weiss, V.

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Appl. Opt. (2)

Appl. Phys B (1)

G. Egret, A. Fix, V. Weiss, G. Poberaj, and T. Baumert, “Diod-laser-seeded optical parametric oscillator for airborne water vapor DIAL application in the upper troposphere,” Appl. Phys B 67, 427 (1998).
[Crossref]

Appl. Phys. B (2)

T. Lindström, U. Holst, P. Weibring, and H. Edner, “Analysis of LIDAR Measurements Using Nonparametric Kernel Regression Methods,” Appl. Phys. B 74, 155 (2002).
[Crossref]

P. Weibring, M. Andersson, H. Edner, and S. Svanberg, “Remote monitoring of idustrial emissions by combination of lidar and plume velocity measurements,” Appl. Phys. B 66, 383 (1998).
[Crossref]

Atmos. Environ. (2)

W. H. Schroeder and J. Munthe, “Atmospheric mercury - an overview,” Atmos. Environ. 32 No. 5, 809 (1998).
[Crossref]

E.G. Pacyna, J.M. Pacyna, and N. Pirrone, “European emissions of atmospheric mercury from anthropogenic sources in 1995,” Atmos. Environ. 35, 2987 (2001).
[Crossref]

Environmetrics (1)

U. Holst, O. Hössjer, C. Björklund, P. Ragnarsson, and H. Edner, “Locally weighted least squares kernel regression and statistical evaluation of lidar measurements,” Environmetrics 7, 401–416 (1996).
[Crossref]

Opt. Lett. (1)

Reg. Environ. Change (1)

K. von Rein and L. D. Hylander, “Experiences from phasing out the use of mercury in Sweden,” Reg. Environ. Change 1, 126 (2000).
[Crossref]

Rev. Sci. Instr. (1)

P. Weibring, J. N. Smith, H. Edner, and S. Svanberg, “Development of a frequency agile optical parametric oscillator system for differential absorption lidar,” Rev. Sci. Instr. 74, 4478 (2003).
[Crossref]

Sci. Tot. Environ. (1)

I. Wängberg, H. Edner, R. Ferrara, E. Lanzillotta, J. Munthe, J. Sommar, S. Svanberg, M. Sjöholm, and P. Weibring, “Mercury emissions from a chlor-alkali plant in Sweden,” Sci. Tot. Environ. 304, 29 (2003).
[Crossref]

Other (3)

http://www.tekran.com/2505/2505fea.html

http://www.emecap.com

S. Svanberg, “Differential Absorption Lidar (DIAL),” in Air Monitoring by Spectroscopic Techniques, M. Sigrist (ed) (Wiley, New York1994).

Supplementary Material (3)

» Media 1: GIF (416 KB)     
» Media 2: GIF (610 KB)     
» Media 3: GIF (466 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

The mobile lidar system in a field campaign in Rosignano Solvay, Italy.

Fig. 2.
Fig. 2.

Schematic overview of the master oscillator (MO) and power oscillator (PO) transmitter.

Fig. 3.
Fig. 3.

(417 KB) Movie of horizontal concentration maps from the MCCA plant in Rosignano Solvay 2002-02-03, 12:11–12:38.

Fig. 4.
Fig. 4.

(611 KB) Movie of vertical concentration maps from the MCCA plant in Bohus 2002-01-18, 12:00–15:27.

Fig. 5.
Fig. 5.

(467 KB) Movie of vertical concentration maps from the MCCA plant in Rosignano Solvay 2002-02-04, 14:35–17:57.

Fig. 6.
Fig. 6.

Typical mercury fluxes from Bohus (left) and Rosignano Solvay (right), respectively.

Metrics