Abstract

We propose a BBO-based chirped-pulse optical parametric amplifier employing an angularly dispersed signal beam to yield a full-octave gain bandwidth, sufficient for the direct amplification of sub-10-fs pulses. Numerical simulations show that this power-scalable amplifier configuration has a small-signal gain of 107 at a pumping intensity of 45 GW/cm2. The additional phase-matching flexibility compared to alternative configurations permits the suppression of parasitic second harmonic generation of the signal beam.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. S. Backus, C.G. Durfee, M.M. Murnane, and H.C. Kapteyn, �??High power ultrafast lasers,�?? Rev. Sci. Instrum. 69, 1207-1223 (1998).
    [CrossRef]
  2. M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Cheriaux, and J.P. Chambaret, �??Control of thermal effects for high-intensity Ti:sapphire laser chains,�?? Appl. Phys. B 70, S193-S196 (2000).
    [CrossRef]
  3. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, and K. Ferencz, �??Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,�?? Opt. Lett. 22, 1562-1564 (1997).
    [CrossRef]
  4. J. Seres, A. Muller, E. Seres, K. O�??Keeffe, M. Lenner, R.F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, �??Sub-10-fs, terawatt-scale Ti:sapphire laser system,�?? Opt. Lett. 28, 1832-1834 (2003).
    [CrossRef] [PubMed]
  5. C.P. Hauri, M. Bruck,W. Kornelis, J. Biegert and U. Keller, �??Generation of 14.8-fs pulses in a spatially dispersed amplifier,�?? Opt. Lett. 29, 201-203 (2004).
    [CrossRef] [PubMed]
  6. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, �??Sub-8-fs pulses from an ultra-broadband optical parametric amplifier in the visible,�?? Opt. Lett. 23, 1283-1285 (1998).
    [CrossRef]
  7. A. Shirakawa, I. Sakane, and T. Kobayashi, �??Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,�?? Opt. Lett. 23, 1292-1294 (1998).
    [CrossRef]
  8. A. Baltuska, T. Fuji, and T. Kobayashi. �??Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,�?? Opt. Lett. 27, 306-308 (2002).
    [CrossRef]
  9. E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orl¨oein, and W. Zinth, �??Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,�?? Appl. Phys. B 71, 457-465 (2000).
    [CrossRef]
  10. A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992).
    [CrossRef]
  11. I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, and J.L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125-133 (1997).
    [CrossRef]
  12. X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, �??Multiterawatt laser system based on optical parametric chirped pulse amplification,�?? Opt. Lett. 27, 1135-1137 (2002).
    [CrossRef]
  13. I.N. Ross, J. Collier, P. Matousek, C.N. Danson, N. Neely, R.M. Allott, D.A. Pepler, C. Hernandez-Gomez, and K. Osvay, �??Generation of terawatt pulses by use of optical parametric chirped pulse amplification,�?? Appl. Opt. 39, 2422-2427 (2000).
    [CrossRef]
  14. I. Jovanovic, C.A. Ebbers, B.C. Stuart, M.R. Hermann, and E.C. Morse, �??Nondegenerate optical parametric chirped pulse amplification,�?? in Conference on Lasers and Electro-Optics , Vol. 73 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 2002), pp. 387�??388.
  15. P. Di Trapani, A. Andreoni, C. Solcia, P. Foggi, R. Danielius, A. Dubietis, and A. Piskarskas, �??Matching of group velocities in three-wave parametric interaction with femtosecond pulses and application to traveling-wave generators,�?? J. Opt. Soc. Am. B 12, 2237-2244 (1995).
    [CrossRef]
  16. V.D. Volosov, S.G. Karpenko, N.E. Kornienko, and V.L. Strizhevskii, �??Method for compensating the phasematching dispersion in nonlinear optics,�?? Sov. J. Quantum Electron. 4, 1090-1098 (1975).
    [CrossRef]
  17. O.E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464-2468 (1989).
    [CrossRef]
  18. G. Szabo and Z. Bor, �??Broadband frequency doubler for femtosecond pulses,�?? Appl. Phys. B 50, 51-54 (1990).
    [CrossRef]
  19. T.R. Zhang, H.R. Choo, and M.C. Downer, �??Phase and group velocity matching for second harmonic generation of femtosecond pulses,�?? Appl. Opt. 29, 3927-3933 (1990).
    [CrossRef] [PubMed]
  20. A.V. Smith, �??Group-velocity-matched three-wave mixing in birefringent crystals,�?? Opt. Lett. 26, 719-721 (2001).
    [CrossRef]
  21. J. Piel, M. Beutter, and E. Riedle, �??20�??50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,�?? Opt. Lett. 25, 180-182 (2000).
    [CrossRef]
  22. K. Kato, �??Second-harmonic generation to 2048 °A in β-BaB2O4,�?? IEEE J. Quantum Electron. 22, 1013-1014 (1986).
    [CrossRef]
  23. G.M. Gale, M. Cavallari, T.J. Driscoll, and F. Hache, �??Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,�?? Opt. Lett. 20, 1562-1564 (1995).
    [CrossRef] [PubMed]
  24. W.J. Alford and A.V. Smith, �??Wavelength variation of the second-order nonlinear coefficients of KNbO3, KTiOPO4, KTiOAsO4, LiNbO3, LiIO3, β-BaB2O4, KH2PO4, and LiB3O5 crystals: A test of Miller wavelength scaling,�?? J. Opt. Soc. Am. B 19, 524-533 (2001).
    [CrossRef]
  25. J. Biegert, P. Schlup, C.P. Hauri, U. Keller and G. Arisholm, �??Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,�?? to be published, (2004).
  26. G. Arisholm. �??General numerical methods for simulating second order nonlinear interactions in birefringent media,�?? J. Opt. Soc. Am. B 14, 2543-2549 (1997).
    [CrossRef]
  27. G. Arisholm, �??Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators,�?? J. Opt. Soc. Am. B 16, 117-127 (1999).
    [CrossRef]
  28. J. Biegert and J.C. Diels, �??Compression of pulses of a few optical cycles through harmonic generation,�?? J. Opt. Soc. Am. B 18, 1218-1226 (2001).
    [CrossRef]
  29. F. Verluise, V. Laude, J.-P. Huignard, P. Tournois, and A. Migus, �??Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,�?? J. Opt. Soc. Am. B 17, 138-145 (2000).
    [CrossRef]
  30. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, �??Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,�?? Opt. Lett. 28, 1987-1989 (2003).
    [CrossRef] [PubMed]
  31. R. DeSalvo, A.A. Said, D.J. Hagan, E.W. van Stryland, and M. Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324-1333 (1996).
    [CrossRef]
  32. M. Sheik-Bahae and M. Ebrahimzadeh, �??Measurements of nonlinear refraction in the second-order �?(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,�?? Opt. Commun. 142, 294-298 (1997).
    [CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

M. Zavelani-Rossi, F. Lindner, C. Le Blanc, G. Cheriaux, and J.P. Chambaret, �??Control of thermal effects for high-intensity Ti:sapphire laser chains,�?? Appl. Phys. B 70, S193-S196 (2000).
[CrossRef]

E. Riedle, M. Beutter, S. Lochbrunner, J. Piel, S. Schenkl, S. Sp¨orl¨oein, and W. Zinth, �??Generation of 10 to 50 fs pulses tunable through all of the visible and the NIR,�?? Appl. Phys. B 71, 457-465 (2000).
[CrossRef]

G. Szabo and Z. Bor, �??Broadband frequency doubler for femtosecond pulses,�?? Appl. Phys. B 50, 51-54 (1990).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Kato, �??Second-harmonic generation to 2048 °A in β-BaB2O4,�?? IEEE J. Quantum Electron. 22, 1013-1014 (1986).
[CrossRef]

R. DeSalvo, A.A. Said, D.J. Hagan, E.W. van Stryland, and M. Sheik-Bahae, �??Infrared to ultraviolet measurements of two-photon absorption and n2 in wide bandgap solids,�?? IEEE J. Quantum Electron. 32, 1324-1333 (1996).
[CrossRef]

O.E. Martinez, �??Achromatic phase matching for second harmonic generation of femtosecond pulses,�?? IEEE J. Quantum Electron. 25, 2464-2468 (1989).
[CrossRef]

J. Opt. Soc. Am. B (6)

Opt. Commun. (3)

A. Dubietis, G. Jonusauskas, and A. Piskarskas, �??Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,�?? Opt. Commun. 88, 437-440 (1992).
[CrossRef]

I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, and J.L. Collier, �??The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers,�?? Opt. Commun. 144, 125-133 (1997).
[CrossRef]

M. Sheik-Bahae and M. Ebrahimzadeh, �??Measurements of nonlinear refraction in the second-order �?(2) materials KTiOPO4, KNbO3, β-BaB2O4, and LiB3O5,�?? Opt. Commun. 142, 294-298 (1997).
[CrossRef]

Opt. Lett. (11)

G.M. Gale, M. Cavallari, T.J. Driscoll, and F. Hache, �??Sub-20-fs tunable pulses in the visible from an 82-MHz optical parametric oscillator,�?? Opt. Lett. 20, 1562-1564 (1995).
[CrossRef] [PubMed]

J. Piel, M. Beutter, and E. Riedle, �??20�??50-fs pulses tunable across the near infrared from a blue-pumped noncollinear parametric amplifier,�?? Opt. Lett. 25, 180-182 (2000).
[CrossRef]

A. Baltuska, T. Fuji, and T. Kobayashi. �??Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,�?? Opt. Lett. 27, 306-308 (2002).
[CrossRef]

X. Yang, Z. Xu, Y. Leng, H. Lu, L. Lin, Z. Zhang, R. Li, W. Zhang, D. Yin, and B. Tang, �??Multiterawatt laser system based on optical parametric chirped pulse amplification,�?? Opt. Lett. 27, 1135-1137 (2002).
[CrossRef]

J. Seres, A. Muller, E. Seres, K. O�??Keeffe, M. Lenner, R.F. Herzog, D. Kaplan, C. Spielmann, and F. Krausz, �??Sub-10-fs, terawatt-scale Ti:sapphire laser system,�?? Opt. Lett. 28, 1832-1834 (2003).
[CrossRef] [PubMed]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, �??Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,�?? Opt. Lett. 28, 1987-1989 (2003).
[CrossRef] [PubMed]

C.P. Hauri, M. Bruck,W. Kornelis, J. Biegert and U. Keller, �??Generation of 14.8-fs pulses in a spatially dispersed amplifier,�?? Opt. Lett. 29, 201-203 (2004).
[CrossRef] [PubMed]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, C. Spielmann, F. Krausz, and K. Ferencz, �??Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,�?? Opt. Lett. 22, 1562-1564 (1997).
[CrossRef]

G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, �??Sub-8-fs pulses from an ultra-broadband optical parametric amplifier in the visible,�?? Opt. Lett. 23, 1283-1285 (1998).
[CrossRef]

A. Shirakawa, I. Sakane, and T. Kobayashi, �??Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,�?? Opt. Lett. 23, 1292-1294 (1998).
[CrossRef]

A.V. Smith, �??Group-velocity-matched three-wave mixing in birefringent crystals,�?? Opt. Lett. 26, 719-721 (2001).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Backus, C.G. Durfee, M.M. Murnane, and H.C. Kapteyn, �??High power ultrafast lasers,�?? Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Sov. J. Quantum Electron. (1)

V.D. Volosov, S.G. Karpenko, N.E. Kornienko, and V.L. Strizhevskii, �??Method for compensating the phasematching dispersion in nonlinear optics,�?? Sov. J. Quantum Electron. 4, 1090-1098 (1975).
[CrossRef]

Trends in Optics and Photonics (1)

I. Jovanovic, C.A. Ebbers, B.C. Stuart, M.R. Hermann, and E.C. Morse, �??Nondegenerate optical parametric chirped pulse amplification,�?? in Conference on Lasers and Electro-Optics , Vol. 73 of Trends in Optics and Photonics , (Optical Society of America, Washington DC, 2002), pp. 387�??388.

Other (1)

J. Biegert, P. Schlup, C.P. Hauri, U. Keller and G. Arisholm, �??Design of a sub-13-fs, multi-gigawatt chirped pulse optical parametric amplification system,�?? to be published, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Crystal axes X, Y, Z (green) and model axes , ŷ, (black). The pump wave vector k 3 is perpendicular to the crystal face and parallel to . k 2 (red) is the signal wave vector with internal noncollinear angle α.

Fig. 2.
Fig. 2.

Phase-matching curves for noncollinear type 1 (ooe) interactions in BBO with a pump wavelength of 400 nm. Each black curve shows the loci of perfect phase matching (Δk=0) for a specific value of θ, while the green line shows wavelengths at which parasitic second harmonic generation is phase matched. The broadband phase matching configuration that has previously been used for white-light seeded OPAs is shown in red (WL). The configurations marked in blue are investigated in this paper.

Fig. 3.
Fig. 3.

(a) Tilted collimated beam and (b) angularly dispersed beam in model x̂ẑ plane. (a) The seed beam (solid lines) is tilted by noncollinear angle α, constant for all wavelengths (blue, red), and interacts with a monochromatic pump (green) to yield a dispersed idler (dashed). (b) Influence of diffraction grating adding constant KG to all frequency components, resulting in a tilted pulse relative to the central k (black). KG is the grating vector.

Fig. 4.
Fig. 4.

Equivalence of angular dispersion and pulse tilt. (a) Untilted pulse envelope, ��(x, t), where is normal to the propagation direction. (b) Fourier transform (kx ,ω)=∫∫��(x, t)exp(i(ωt-kxx))dxdt. (c) Tilted pulse ��′(x, t)=��(ax-bct, at+bx/c), where c is the velocity of light and a and b are rotation coefficients that satisfy a 2+b 2=1. (d) Fourier transform of the tilted pulse, which can be shown to be Ẽ′(kx ,ω)=(akx +/c,-bckx ). The angular dispersion is reflected by the variation of kx with ω.

Fig. 5.
Fig. 5.

(a) Phase mismatch Δk; and (b) gain; as functions of signal frequency ω 2 for λ 3=400nm, θ=0.51, and Lc =2.5mm. α=10mrad (black), α=16.2mrad (red), and α=22.3mrad (green).

Fig. 6.
Fig. 6.

(a) Phase mismatch and (b) gain as functions of signal frequency for λ 3=400nm, θ=0.69, Lc =2.8mm and tilted pulse front. kx =2106mm-1 (black) and kx =2110mm-1 (red).

Fig. 7.
Fig. 7.

(a) Normalized seed power (black) and output signals for seed intensity 10 W/cm2 (red dashed) and 1000 W/cm2 (red solid). (b) Spectra of seed (black), signal (red) and idler (green) for a positively chirped seed pulse. The seed intensity is 10 W/cm2 (dashed) or 1000 W/cm2 (solid). (c) Signal and idler spectra for a negatively chirped seed.

Fig. 8.
Fig. 8.

Signal group velocity index as a function of frequency for configuration (ii). The blue line shows the group index for the ordinary (slow) polarization in BBO, while the red line shows the effective group index in the -direction calculated using Eq. (3). The approximate symmetry of ng,z around the degenerate frequency (375 THz) reflects wideband phase matching. The ng ,3=1.716 group index of the pump beam is shown by the green line.

Fig. 9.
Fig. 9.

Simulation results for idealized super-Gaussian beams. (a) Temporal profiles of the input pump (blue dashed), output pump (blue solid), input seed (107 times magnified, black), output signal (red), and idler (green). (b) Spectra of seed (107 times magnified, black), output signal (red), and idler (green). (c) Contours of output signal fluence distribution. (d) Far-field spectra for the -direction (noncollinear direction) of the seed (upper) and output signal (lower). The dashed lines show the center kx values. (e) Spectral phase of output signal relative to a passively propagated beam. (f) Transform limited pulses corresponding to the seed spectrum (black) and output signal spectrum (red). Their durations are 2.4 fs and 3.3 fs (FWHM), respectively. The blue curve shows the pulse corresponding to the output signal spectrum and the nonlinear phase distortion from (e).

Fig. 10.
Fig. 10.

Results for a measured seed pulse, Gaussian pump pulse, and Gaussian spatial profiles. (a) Temporal profiles of the input pump (blue dashed), output pump (blue solid), input seed (3×105 times magnified) (black), output signal (red), and idler (green). (b) Spectra of seed (3×105 times magnified) (black), output signal (red), and idler (green). (c) Spectral phase of output signal relative to a passively propagated beam with n 2=0 (red) and n 2=10-15 cm2/W (blue). The green curve shows the rapid part of the phase variation alone. (d) Transform limited seed (black) and signal (red) pulses. The blue curve shows the pulse corresponding to the output signal spectrum and the nonlinear phase distortion (the red line in (c)).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ω 3 = ω 2 + ω 1 ,
d Δ k d ω 2 = d k 2 d ω 2 d k 1 d ω 2 = d k 2 d ω 2 + d k 1 d ω 1 .
v g , z = ( d k z d ω ) 1 = v g cos [ α ( ω ) ] ,
g = γ 2 ω 1 ω 2 I 3 ( Δ k 2 ) 2 ,
γ = χ eff c Z 0 2 n 1 n 2 n 3 ,

Metrics