Abstract

We consider an air-silica honeycomb lattice and demonstrate a new approach to the formation of a core defect. Typically, a high or low-index core is formed by adding a high-index region or an additional air-hole (or other low-index material) to the lattice, but here we discuss how a core defect can be formed by manipulating the cladding region rather than the core region itself. Germanium-doping of the honeycomb lattice has recently been suggested for the formation of a photonic band-gap guiding silica-core and here we experimentally demonstrate how an index-guiding silica-core can be formed by fluorine-doping of the honeycomb lattice.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847�??851 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996).
    [CrossRef] [PubMed]
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic Band Gap Guidance in Optical Fibers,�?? Science 282, 1476�??1478 (1998).
    [CrossRef] [PubMed]
  4. J. Lægsgaard and A. Bjarklev, �??Doped photonic bandgap fibers for short-wavelength nonlinear devices,�?? Opt. Lett. 28, 783�??785 (2003).
    [CrossRef] [PubMed]
  5. B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,�?? Opt. Lett. 26, 1469�??1471 (2001).
    [CrossRef]
  6. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347�??1348 (1998).
    [CrossRef]
  7. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, �??Improved large-mode area endlessly single-mode photonic crystal fibers,�?? Opt. Lett. pp. 393�??395 (2003).
    [CrossRef] [PubMed]
  8. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Single-mode photonic crystal fiber with an effective area of 600 µm2 and low bending loss,�?? Electron. Lett. 39, 1802�??1803 (2003).
    [CrossRef]
  9. M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botton, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488�??490 (2001).
    [CrossRef]
  10. M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,�?? Opt. Lett. 28, 1645�??1647 (2003).
    [CrossRef] [PubMed]
  11. M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, �??Investigation of micro deformation induced attenuation spectra in a photonic crystal fiber,�?? Opt. Lett. 28, 236�??238 (2003).
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927�??933 (2002).
    [CrossRef]
  13. T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single mode photonic crystal fibre,�?? Opt. Lett. 22, 961�??963 (1997).
    [CrossRef] [PubMed]
  14. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066,611 (2002).
    [CrossRef]
  15. B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684�??1686 (2002).
    [CrossRef]
  16. N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, �??Modal cut-off and the V�??parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879�??1881 (2003).
    [CrossRef] [PubMed]
  17. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cut-off phenomena in non-linear photonic crystal fibers,�?? Opt. Lett. 28, 1882�??1884 (2003).
    [CrossRef] [PubMed]
  18. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, �??Small-core photonic crystal fibers with weakly disordered air-hole claddings,�?? J. Opt. A: Pure Appl. Opt. 6, 221�??223 (2004).
    [CrossRef]
  19. T. T. Larsen, A. Bjarklev, D. S. Hermann, and J. Broeng, �??Optical devices based on liquid crystal photonic bandgap fibres,�?? Opt. Express 11, 2589 �?? 2596 (2003). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2589</a>
    [CrossRef] [PubMed]

Electron. Lett.

J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fibre,�?? Electron. Lett. 34, 1347�??1348 (1998).
[CrossRef]

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Single-mode photonic crystal fiber with an effective area of 600 µm2 and low bending loss,�?? Electron. Lett. 39, 1802�??1803 (2003).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927�??933 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, K. P. Hansen, and J. Lægsgaard, �??Small-core photonic crystal fibers with weakly disordered air-hole claddings,�?? J. Opt. A: Pure Appl. Opt. 6, 221�??223 (2004).
[CrossRef]

Nature

J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847�??851 (2003).
[CrossRef] [PubMed]

Opt Lett

J. Lægsgaard and A. Bjarklev, �??Doped photonic bandgap fibers for short-wavelength nonlinear devices,�?? Opt. Lett. 28, 783�??785 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett

J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547�??1549 (1996).
[CrossRef] [PubMed]

Opt. Lett.

T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Endlessly single mode photonic crystal fibre,�?? Opt. Lett. 22, 961�??963 (1997).
[CrossRef] [PubMed]

M. J. Steel, T. P. White, C. M. de Sterke, R. C. McPhedran, and L. C. Botton, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488�??490 (2001).
[CrossRef]

B. J. Mangan, J. Arriaga, T. A. Birks, J. C. Knight, and P. S. J. Russell, �??Fundamental-mode cutoff in a photonic crystal fiber with a depressed-index core,�?? Opt. Lett. 26, 1469�??1471 (2001).
[CrossRef]

B. T. Kuhlmey, R. C. McPhedran, and C. M. de Sterke, �??Modal cutoff in microstructured optical fibers,�?? Opt. Lett. 27, 1684�??1686 (2002).
[CrossRef]

M. D. Nielsen, G. Vienne, J. R. Folkenberg, and A. Bjarklev, �??Investigation of micro deformation induced attenuation spectra in a photonic crystal fiber,�?? Opt. Lett. 28, 236�??238 (2003).
[CrossRef] [PubMed]

N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, A. Petersson, and H. R. Simonsen, �??Improved large-mode area endlessly single-mode photonic crystal fibers,�?? Opt. Lett. pp. 393�??395 (2003).
[CrossRef] [PubMed]

M. D. Nielsen, J. R. Folkenberg, and N. A. Mortensen, �??Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications,�?? Opt. Lett. 28, 1645�??1647 (2003).
[CrossRef] [PubMed]

N. A. Mortensen, J. R. Folkenberg, M. D. Nielsen, and K. P. Hansen, �??Modal cut-off and the V�??parameter in photonic crystal fibers,�?? Opt. Lett. 28, 1879�??1881 (2003).
[CrossRef] [PubMed]

J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cut-off phenomena in non-linear photonic crystal fibers,�?? Opt. Lett. 28, 1882�??1884 (2003).
[CrossRef] [PubMed]

Phys. Rev. E

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066,611 (2002).
[CrossRef]

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic Band Gap Guidance in Optical Fibers,�?? Science 282, 1476�??1478 (1998).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Cross-section of the PCF with air-holes indicated by filled circles and the fluorine doped regions indicated by open circles. The perfectly-matched layers employed in finite-element simulations are also indicated.

Fig. 2.
Fig. 2.

Spectral loss measured by a standard white-light cut-back technique. OTDR measurements at λ=1319 nm and 1550 nm are also indicated by red dots. The measurements are performed with 200 m of fiber on a spool with a radius of 8 cm. The left insets show an optical micrograph of the fiber end-facet with the dark circular regions showing the air holes and the light regions showing the fluorine-doping in the silica background. The right inset shows a near-field image of the fundamental mode at λ=635 nm.

Fig. 3.
Fig. 3.

Mode-spacing (left axis) derived from periodic micro-deformation spectra (right axis). Red crosses indicate values of Δn from numerical simulations while the solid curves are the measured attenuation peaks induced by periodic micro-deformations. The number above each peak indicate if the peak is of 1st or 2nd order and the open circles represent the corresponding mode spacing calculated from the measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ n = c 2 v g E δ ε E E ε E c n s v g E δ n E E ε E

Metrics