Abstract

We identify two physical mechanisms which drastically increase the Q/V factor of photonic crystal microcavities. Both mechanisms rely on a fine tuning the geometry of the holes around the cavity defect. The first mechanism relies on engineering the mirrors in order to reduce the out-of-plane far field radiation. The second mechanism is less intuitive and relies on a pure electromagnetism effect based on transient fields at the sub-wavelength scale, namely a recycling of the mirror losses by radiation modes. The recycling mechanism enables the design of high-performance microresonators with moderate requirements on the mirror reflectivity. Once the geometry around the defect is optimised, both mechanisms are shown to strongly impact the Q and the Purcell factors of the microcavity.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. E.M. Purcell, �??Spontaneous emission probabilities at radio frequencies�??, Phys. Rev. 69, 681 (1946)
  2. H. Yokoyama and K. Ujihara, Spontaneous emission and laser oscillation in microcavities, (FL: CRC Press, 1995)
  3. O.J. Painter, A. Husain, A. Scherer, J.D. O'Brien, I. Kim, P.D. Dapkus,�?? Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,�?? J. Lightwave Technol. 17, 2082-2088 (1999).
    [CrossRef]
  4. S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000).
    [CrossRef]
  5. D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
    [CrossRef]
  6. A.S. Jugessur, P. Pottier, R.M. De La Rue, "One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides," Electron. Lett. 39, 367-369 (2003).
    [CrossRef]
  7. M. Palamaru and Ph. Lalanne, "Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-69 (2001).
    [CrossRef]
  8. Steven G. Johnson, Shanhui Fan, Attila Mekis and J. D. Joannopoulos, �??Multipole-cancellation mechanism for high- Q cavities in the absence of a complete photonic band gap,�?? Appl. Phys. Lett. 78, 3388-00 (2001).
    [CrossRef]
  9. J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, art. #016608 (2002).
    [CrossRef]
  10. K. Srinivasan, O. Painter, �??Momentum space design of high-Q photonic crystal optical cavities,�?? Opt. Express 10, 670-684 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670</a>
  11. Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high Q�??s, small V�??s microcavities," IEEE J. Quantum Electron. 39, 1430-38 (2003)
    [CrossRef]
  12. J.P. Zhang, D.Y. Chu, S.L. Wu, W.G. Bi, R.C. Tiberio, R.M. Joseph, A. Taflove, C.W. Tu, S.T. Ho, �??Nanofabrication of 1-D Photonic Bandgap Structures Along Photonic Wire,�?? IEEE Photon. Technol. Lett. 8, 491 (1996).
    [CrossRef]
  13. J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith and E.P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143 (1997).
    [CrossRef]
  14. D.J. Ripin, K.Y. Lim, G.S. Petrich, P.R. Villeneuve, S. Fan, E.R. Thoen, J.D. Joannopoulos, E.P. Ippen and L.A. Kolodziejski, �??Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides,�?? J. Appl. Phys. 87, 1578-80 (2000).
    [CrossRef]
  15. Ph. Lalanne and E. Silberstein, "Fourier-modal method applied to waveguide computational problems," Opt. Lett. 25, 1092-94 (2000).
  16. E. Silberstein, Ph. Lalanne, J.P. Hugonin and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865 (2001).
  17. J.P Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational. Phys. 114, 185 (1994).
    [CrossRef]
  18. P. Benech and D. Khalil, "Rigorous spectral analysis of leaky structures: application to the prism coupling problem," Opt. Commun. 118, 220 (1995).
    [CrossRef]
  19. Y. Akahane, T. Asano, B-S Song and S. Noda, �??High-Q photonic nanocavity in two-dimensional photonic crystal,�?? Nature 425, 944-47 (2003).
    [CrossRef]
  20. A.W. Snyder and J.D. Love, Optical Waveguide theory (Chapman and Hall, NY, 1983).

Appl. Phys. Lett.

D. Peyrade, E. Silberstein, P. Lalanne, A. Talneau, Y. Chen, "Short Bragg mirrors with adiabatic modal conversion," Appl. Phys. Lett. 81, 829-831 (2002).
[CrossRef]

M. Palamaru and Ph. Lalanne, "Photonic crystal waveguides: out-of-plane losses and adiabatic modal conversion," Appl. Phys. Lett. 78, 1466-69 (2001).
[CrossRef]

Steven G. Johnson, Shanhui Fan, Attila Mekis and J. D. Joannopoulos, �??Multipole-cancellation mechanism for high- Q cavities in the absence of a complete photonic band gap,�?? Appl. Phys. Lett. 78, 3388-00 (2001).
[CrossRef]

Electron. Lett.

A.S. Jugessur, P. Pottier, R.M. De La Rue, "One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides," Electron. Lett. 39, 367-369 (2003).
[CrossRef]

IEEE J. Quantum Electron.

Ph. Lalanne and J. P. Hugonin, "Bloch-wave engineering for high Q�??s, small V�??s microcavities," IEEE J. Quantum Electron. 39, 1430-38 (2003)
[CrossRef]

IEEE Photon. Technol. Lett.

J.P. Zhang, D.Y. Chu, S.L. Wu, W.G. Bi, R.C. Tiberio, R.M. Joseph, A. Taflove, C.W. Tu, S.T. Ho, �??Nanofabrication of 1-D Photonic Bandgap Structures Along Photonic Wire,�?? IEEE Photon. Technol. Lett. 8, 491 (1996).
[CrossRef]

J. Appl. Phys.

D.J. Ripin, K.Y. Lim, G.S. Petrich, P.R. Villeneuve, S. Fan, E.R. Thoen, J.D. Joannopoulos, E.P. Ippen and L.A. Kolodziejski, �??Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides,�?? J. Appl. Phys. 87, 1578-80 (2000).
[CrossRef]

J. Computational. Phys.

J.P Bérenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational. Phys. 114, 185 (1994).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am A.

E. Silberstein, Ph. Lalanne, J.P. Hugonin and Q. Cao, "On the use of grating theory in integrated optics," J. Opt. Soc. Am. A. 18, 2865 (2001).

Nature

J.S. Foresi, P.R. Villeneuve, J. Ferrera, E.R. Thoen, G. Steinmeyer, S. Fan, J.D. Joannopoulos, L.C. Kimerling, H.I. Smith and E.P. Ippen, �??Photonic-bandgap microcavities in optical waveguides,�?? Nature 390, 143 (1997).
[CrossRef]

S. Noda, A. Chutinan and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608-610 (2000).
[CrossRef]

Y. Akahane, T. Asano, B-S Song and S. Noda, �??High-Q photonic nanocavity in two-dimensional photonic crystal,�?? Nature 425, 944-47 (2003).
[CrossRef]

Opt. Commun.

P. Benech and D. Khalil, "Rigorous spectral analysis of leaky structures: application to the prism coupling problem," Opt. Commun. 118, 220 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E.M. Purcell, �??Spontaneous emission probabilities at radio frequencies�??, Phys. Rev. 69, 681 (1946)

Phys. Rev. E

J. Vuckovic, M. Loncar, H. Mabuchi and A. Scherer, "Design of photonic crystal microcavities for cavity QED," Phys. Rev. E 65, art. #016608 (2002).
[CrossRef]

Other

H. Yokoyama and K. Ujihara, Spontaneous emission and laser oscillation in microcavities, (FL: CRC Press, 1995)

A.W. Snyder and J.D. Love, Optical Waveguide theory (Chapman and Hall, NY, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics