Abstract

A fast 3-D optical imaging method with use of exogenous fluorescence agent is proposed and demonstrated by simulation in a model tissue. After administration of fluorescent agent, ultrashort near-infrared laser pulses are used to illuminate the tissue and excite fluorescence emission. The transient fluorescence signals are detected on the tissue boundaries and employed to reconstruct a 3-D image of relative fluorescence emission distribution inside the tissue. A region with greater fluorescence emission represents a diseased tissue if the fluorescent agent has a close affinity with the disease. We successfully demonstrated the feasibility of this method in the imaging of a small cubic tumor embedded in a cubical tissue phantom with a preassigned uptake distribution of fluorescent indocyanine green dye. The image reconstruction does not involve any inverse optimization. It took less than 5 minutes in a general PC for the two model imaging problems.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. M. A. O�??Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, �??Fluorescence Lifetime Imaging in Turbid Media,�?? Opt. Lett. 21, 158-160 (1996).
    [CrossRef]
  2. V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, �??Concurrent MRI and Diffuse Optical Tomography of Breast After Indocyanine Green Enhancement,�?? Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
    [CrossRef] [PubMed]
  3. R. Roy and E. M. Sevick-Muraca, �??Truncated Newton�??s Optimization Scheme for Absorption and Fluorescence Optical Tomography: Part 1 Theory and Formulation,�?? Opt. Express 4, 353-371 (1999).
    [CrossRef] [PubMed]
  4. A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel and E. M. Sevick-Muraca, �??Fluorescence-Enhanced Optical Imaging in Large Tissue Volumes Using a Gain-Modulated ICCD Camera,�?? Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef] [PubMed]
  5. J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, �??Fluorescence Tomographic Imaging in Turbid Media Using Early-Arriving Photons and Laplace Transforms,�?? Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
    [CrossRef] [PubMed]
  6. J. Chang, H. L. Graber, and R.L. Barbour, �??Imaging of Fluorescence in Highly Scattering Media,�?? IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
    [CrossRef] [PubMed]
  7. A. D. Klose and A. H. Hielscher, �??Fluorescence Tomography with Simulated Data Based on the Equation of Radiative Transfer,�?? Opt. Lett. 28, 1019-1021 (2003).
    [CrossRef] [PubMed]
  8. Z. Guo and S. Kumar, �??Discrete Ordinates Solution of Short Pulse Laser Transport in Two-Dimensional Turbid Media,�?? Appl. Opt. 40, 3156-3163 (2001).
    [CrossRef]
  9. Z. Guo and K.-H. Kim, �??Ultrafast-Laser-Radiation Transfer in Heterogeneous Tissues With the Discrete-Ordinates Method,�?? Appl. Opt. 42, 2897-2905 (2003).
    [CrossRef] [PubMed]
  10. Z. Guo and S. Kumar, �??Radiation Element Method for Transient Hyperbolic Radiative Transfer in Plane-Parallel Inhomogeneous Media,�?? Numerical Heat Transfer B 39, 371 �?? 387 (2001).
    [CrossRef]
  11. B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, New York, 2002).
  12. K. R. Castleman, Digital Image Processing (Prentice Hall, New Jersey, USA, 1996).
  13. S. K. Wan, Z. Guo, S. Kumar, J. Aber, and B. A. Garetz, �??Noninvasive Detection of Inhomogeneities in Turbid Media with Time-Resolved Log-Slope Analysis,�?? JQSRT 84, 493 �?? 500 (2004).
    [CrossRef]

Appl. Opt.

IEEE Trans. Biomed. Eng.

J. Chang, H. L. Graber, and R.L. Barbour, �??Imaging of Fluorescence in Highly Scattering Media,�?? IEEE Trans. Biomed. Eng. 44, 810-822 (1997).
[CrossRef] [PubMed]

JQSRT

S. K. Wan, Z. Guo, S. Kumar, J. Aber, and B. A. Garetz, �??Noninvasive Detection of Inhomogeneities in Turbid Media with Time-Resolved Log-Slope Analysis,�?? JQSRT 84, 493 �?? 500 (2004).
[CrossRef]

Numerical Heat Transfer B

Z. Guo and S. Kumar, �??Radiation Element Method for Transient Hyperbolic Radiative Transfer in Plane-Parallel Inhomogeneous Media,�?? Numerical Heat Transfer B 39, 371 �?? 387 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

A. Godavarty, M. J. Eppstein, C. Zhang, S. Theru, A. B. Thompson, M. Gurfinkel and E. M. Sevick-Muraca, �??Fluorescence-Enhanced Optical Imaging in Large Tissue Volumes Using a Gain-Modulated ICCD Camera,�?? Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA

J. Wu, L. Perelman, R. R. Dasari, and M. S. Feld, �??Fluorescence Tomographic Imaging in Turbid Media Using Early-Arriving Photons and Laplace Transforms,�?? Proc. Natl. Acad. Sci. USA 94, 8783-8788 (1997).
[CrossRef] [PubMed]

V. Ntziachristos, A. G. Yodh, M. Schnall, B. Chance, �??Concurrent MRI and Diffuse Optical Tomography of Breast After Indocyanine Green Enhancement,�?? Proc. Natl. Acad. Sci. USA 97, 2767-2772 (2000).
[CrossRef] [PubMed]

Other

B. Valeur, Molecular Fluorescence: Principles and Applications (Wiley-VCH, Weinheim, New York, 2002).

K. R. Castleman, Digital Image Processing (Prentice Hall, New Jersey, USA, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Sketch of a model imaging system.

Fig. 2.
Fig. 2.

A representative fluorescence signal.

Fig. 3.
Fig. 3.

Reconstructed 3-D tumor image.

Fig. 4.
Fig. 4.

Projections of the 3-D tumor image: (a) on the Y-Z plane, (b) on the X-Z plane, (c) on the X-Y plane.

Fig 5.
Fig 5.

Tomographic images: (a) along the X-direction, (b) along the Y-direction, (c) along the Z-direction.

Fig. 6.
Fig. 6.

Reconstructed 3-D image for a small tumor embedded at off-center of the tissue.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

1 c I 1 l t + ξ l I 1 l X + η l I 1 l Y + μ l I 1 l Z + σ e 1 I 1 l = σ e 1 ( S 1 l + S c l )
1 c I 2 l t + ξ l I 2 l X + η l I 2 l Y + μ l I 2 l Z + σ e 2 I 2 l = σ e 2 ( S 2 l + S F l )
S j l = ω j 4 π i = 1 n w j i Φ i l ( s i s l ) I j i , j = 1 , 2
S c l = ω 1 4 π I 0 [ X = 0 , Y , Z , t X ( c ξ c ) ] · exp ( σ e X ξ c ) · δ ( ξ c 1 ) · Φ cl
S F l = ω 2 4 π v 2 v 1 α F σ a 1 τ 0 t C v C v 0 e ( t t ) τ i = 1 n w i I 1 i ( t ) d t
T i , j , k C = T i , j , k T 0 2 , T m i , j , k C = T m i , j , k T m 0 2
P ( T i , j , k ) = 1 2 π σ exp [ ( T i , j , k T m i , j , k C ) 2 2 σ 2 ]
σ = ( T m i , j , k C T i , j , k C ) 2 ln 2 .
T i , j , k F = T m i , j , k C 2 σ 2 ln ( 2 π σ P ) .
R i , j , k = c T i , j , k F .
( X D i ) 2 + ( Y D j ) 2 + ( Z D k ) 2 = R i , j , k 2
Z = V k 1 = D k + R i , j , k 2 ( V i D i ) 2 ( V j D j ) 2 ,
or Z = V k 2 = D k R i , j , k 2 ( V i D i ) 2 ( V j D j ) 2 .
E ( V i , V j , V k ) = { i = 1 N k = 1 K [ I D ( D i , D 1 , D k ; V i , V j , V k ) + I D ( D i , D M , D k ; V i , V j , V k ) ] + j = 1 M k = 1 K [ I D ( D 1 , D j , D k ; V i , V j , V k ) + I D ( D N , D j , D k ; V i , V j , V k ) ] } { i = 1 N k = 1 K [ I max ( D i , D 1 , D k ) + I max ( D i , D M , D k ) ] + j = 1 M k = 1 K [ I max ( D 1 , D j , D k ) + I max ( D N , D j , D k ) ] }

Metrics