Abstract

We study the dispersion and leakage properties for the recently reported low-loss photonic band-gap fiber by Smith et al. [Nature 424, 657 (2003)]. We find that surface modes have a significant impact on both the dispersion and leakage properties of the fundamental mode. Our dispersion results are in qualitative agreement with the dispersion profile reported recently by Ouzounov et al. [Science 301, 1702 (2003)] though our results suggest that the observed long-wavelength anomalous dispersion is due to an avoided crossing (with surface modes) rather than band-bending caused by the photonic band-gap boundary of the cladding.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
    [CrossRef] [PubMed]
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, �??Low-loss hollow-core silica/air photonic band-gap fibre,�?? Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  5. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
    [CrossRef] [PubMed]
  6. G. Bouwmans, F. Luan, J. C. Knight, P. S. J. Russel, L. Farr, B. J. Mangan, and H. Sabert, �??Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength,�?? Opt. Express 11, 1613-1620 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-14-1613</a>.
    [CrossRef] [PubMed]
  7. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, �??All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber,�?? Opt. Express 11, 2832-2837 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832</a>.
    [CrossRef] [PubMed]
  8. N. A. Mortensen and M. D. Nielsen, �??Modeling of realistic cladding structures for air-core photonic band-gap fibers,�?? Opt. Lett. 29, 349-351 (2004).
    [CrossRef] [PubMed]
  9. K. Saitoh and M. Koshiba, �??Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,�?? Opt. Express 11, 3100-3109 (2003), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-23-3100</a>.
    [CrossRef] [PubMed]
  10. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, �??Material effects in air-guiding photonic bandgap fibers,�?? J. Opt. Soc. Am. B 20, 2046-2051 (2003).
    [CrossRef]
  11. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488-490 (2001).
    [CrossRef]
  12. K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
    [CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Saitoh and M. Koshiba, �??Photonic bandgap fibers with high birefringence,�?? IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (2)

J. C. Knight, �??Photonic crystal fibres,�?? Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, �??Low-loss hollow-core silica/air photonic band-gap fibre,�?? Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Science (3)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, �??Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,�?? Science 301, 1702-1704 (2003).
[CrossRef] [PubMed]

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476-1478 (1998).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, �??Singlemode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

The upper panel shows a dielectric structure that resembles that of Ref. [4]. The lower left panel shows a unit cell of the cladding region, the lower middle panel shows a close-up of the core construction, and the lower right panel shows a pentagon with rounded corners neighboring the air-core region.

Fig. 2.
Fig. 2.

In the upper panel the effective index versus wavelength plot illustrates the hybridization and avoided-crossings for guided air-core modes (low slope curves) and silica-surface modes (steep curves). Field plots around the avoided crossings are shown in Fig. 3. Lower panel shows confinement loss versus wavelength for the fundamental-like mode with PBG boundaries and avoided crossings indicated by dashed lines. The BPG boundaries are calculated for an infinite periodic lattice of the cladding holes.

Fig. 3.
Fig. 3.

Contour plots of the fundamental-like mode (panels A, D, and G) and surface modes (panels B, C, E, and F). The labeling of the panels refers to the labeling in Fig. 2.

Fig. 4.
Fig. 4.

Plots of the group-velocity dispersion versus wavelength for the fundamental-like mode, see Fig. 2 and panel A in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = ( d Λ ) 2 [ 1 ( 1 π 2 3 ) ( d c d ) 2 ]

Metrics