Abstract

This paper presents the analysis of a 2 cm long in-fiber polymer waveguide formed on the platform of a D-shaped optical fiber. Numerical simulations provide an understanding of the major loss mechanisms for feasible in-fiber polymer waveguide geometries. The primary loss mechanism is determined to be excitation of slab modes on the flat surface of the fiber with transition geometry being the next major contribution to loss.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and analysis of a low-loss in-fiber active polymer waveguide

Kevin H. Smith, Doug J. Markos, Benjamin L. Ipson, Stephen M. Schultz, Richard H. Selfridge, John P. Barber, Kevin J. Campbell, Thomas D. Monte, and Richard B. Dyott
Appl. Opt. 43(4) 933-939 (2004)

Versatile in-fiber sensing by use of core-replaced D-fiber

Kevin H. Smith, Benjamin L. Ipson, Richard H. Selfridge, and Stephen M. Schultz
Appl. Opt. 44(1) 22-26 (2005)

Controlled core removal from a D-shaped optical fiber

Douglas J. Markos, Benjamin L. Ipson, Kevin H. Smith, Stephen M. Schultz, Richard H. Selfridge, Thomas D. Monte, Richard B. Dyott, and Gregory Miller
Appl. Opt. 42(36) 7121-7125 (2003)

References

  • View by:
  • |
  • |
  • |

  1. R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
    [Crossref]
  2. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
    [Crossref]
  3. S. Tseng and C. Chen, “Side-polished fibers,” Appl. Opt. 31, 3438–3447, (1992).
    [Crossref] [PubMed]
  4. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23, 1826–1828 (1998).
    [Crossref]
  5. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, “Controlled core removal from a D-shaped optical fiber,” Appl. Opt. 42, 7121–7125 (2003).
    [Crossref]
  6. K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, “Fabrication and analysis of a low-loss in-fiber active polymer waveguide,” Appl. Opt. 43, 933–939 (2004).
    [Crossref] [PubMed]
  7. S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
    [Crossref]
  8. S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph. D. dissertation, Dept. Elect. Eng., Univ. of Southern California, Los Angeles, CA, 1998.
  9. BeamPROP™User’s Guide, RSoft Inc., 200 Executive Blvd., Ossining, NY 10562.
  10. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

2004 (1)

2003 (1)

1998 (1)

1997 (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

1996 (1)

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[Crossref]

1992 (1)

1991 (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

1987 (1)

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

Barber, J. P.

Black, R. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Campbell, K. J.

Canfield, B. K.

Chen, C.

Dyott, R. B.

Garner, S.

S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph. D. dissertation, Dept. Elect. Eng., Univ. of Southern California, Los Angeles, CA, 1998.

Garvey, D. W.

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Ipson, B. L.

Jauncey, I.

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

Kuzyk, M. G.

Lacroix, S.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Markos, D. J.

Mears, R.

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

Miller, G.

Mononobe, S.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[Crossref]

Monte, T. D.

Ohtsu, M.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[Crossref]

Payne, D.

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

Reekie, L.

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

Schultz, S. M.

Selfridge, R. H.

Smith, K. H.

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

Tostenrude, J.

Tseng, S.

Welker, D. J.

Appl. Opt. (3)

Electron. Lett. (1)

R. Mears, L. Reekie, I. Jauncey, and D. Payne, “Low noise erbium-doped fiber amplifier aperating at 1.54 µm,” Electron. Lett. 23, 1026–1028, (1987).
[Crossref]

IEE Proc. J. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibres and devices,” IEE Proc. J. 138, 343–354, Oct. 1991.

IEEE J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol. 15, 1263–1276 (1997).
[Crossref]

J. Lightwave Technol. (1)

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14, 2231–2235 (1996).
[Crossref]

Opt. Lett. (1)

Other (2)

S. Garner, “Three dimensional integration of passive and active polymer waveguide devices,” Ph. D. dissertation, Dept. Elect. Eng., Univ. of Southern California, Los Angeles, CA, 1998.

BeamPROP™User’s Guide, RSoft Inc., 200 Executive Blvd., Ossining, NY 10562.

Supplementary Material (2)

» Media 1: AVI (452 KB)     
» Media 2: AVI (1266 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. The elliptical germania doped D-fiber core is surrounded by a lower index fluorine doped cladding region.
Fig. 2.
Fig. 2. (452 KB) Movie of the cross-section of the fiber as it is etched in HF acid.
Fig. 3.
Fig. 3. SEM images of a D-fiber and a typical etch profile. The cladding has been etched only slightly while about half of the core has been removed.
Fig. 4.
Fig. 4. Cross-sectional SEM images of polymer waveguides with polymer viscosities increasing from (a) to (c). The white lines were added to show the interface between the glass and polymer.
Fig. 5.
Fig. 5. The cross-sections of the two polymer waveguides that were analyzed.
Fig. 6.
Fig. 6. Top view of the three-dimensional simulation of light propagating from unetched fiber into polymer waveguide for thin (a) and thick (b) polymer layers.
Fig. 7.
Fig. 7. (1.27 MB) Simulations of light propagating through a transition from unetched fiber to thin (top) and thick (bottom) polymer waveguides.
Fig. 8.
Fig. 8. (322 KB) Video of the index profile of the fiber with 110 µm long transition regions as a function of z.
Fig. 9.
Fig. 9. Plot of loss as light propagates through transitions of different lengths.

Metrics