Abstract

We demonstrate a method of optical tomography for surface and sub-surface imaging of biological tissues, based on the principle of wide field optical coherence tomography and capable of providing full-color three-dimensional views of a tissue structure. Contour or tomographic images are obtained with an interferometric imaging system using broadband light sources. The interferometric images are analyzed in the three color channels and recombined to generate 3D microscopic images of tissue structures with full natural color representation. In contrast to most existing three-dimensional microscopy methods, the presented technique allows monitoring of tissue structures close to its natural color, which may be useful in physiological and pathological applications.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. C.J.R. Sheppard and D.M. Shotton, Confocal Laser Scanning Microscopy, (Springer, New York, 1997).
  2. A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, �??Optical coherence tomography �?? principles and applications,�?? Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  3. F.M. Xu, H.E. Pudavar, P.N. Prasad, and D. Dickensheets, �??Confocal enhanced optical coherence tomography for nondestructive evaluation of paints and coatings,�?? Opt. Lett. 24, 1808-1810 (1999).
    [CrossRef]
  4. Z. Ding, Y. Zhao, H. Ren, J.S. Nelson, and Z. Chen, �??Real-time phase-resolved optical coherence tomography and optical Doppler tomography,�?? Opt. Exp. 10, 236-245 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236</a>.
    [CrossRef]
  5. E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, and J.G. Fujimoto, �??In vivo retinal imaging by optical coherence tomography,�?? Opt. Lett. 18, 1864-1866 (1993).
    [CrossRef] [PubMed]
  6. C.K. Hitzenberger, P. Trost, P.W. Lo, and Q. Zhou, �??Three-dimensional imaging of the human retina by high-speed optical coherence tomography,�?? Opt. Exp. 11, 2753-2761 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>.
    [CrossRef]
  7. P.J. Smith, C.M. Taylor, A.J. Shaw, and E.M. McCabe, �??Programmable array microscopy with a ferroelectric liquid-crystal spatial light modulator,�?? Appl. Opt. 39, 1664-1669 (2000).
    [CrossRef]
  8. M. A. A. Neil, R. Juskaitis, and T. Wilson, �??Method of obtaining optical sectioning by using structured light in a conventional microscope,�?? Opt. Lett. 22 1905-1907 (1997).
    [CrossRef]
  9. E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberle, C. Rulliere, P. E. Minot, M. Lassegues, and J.E.S. Bazeille, �??Wide-field optical coherence tomography: imaging of biological tissues,�?? Appl. Opt. 41, 2059-2064 (2002).
    [CrossRef] [PubMed]
  10. B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, �??Full-field optical coherence tomography with thermal light,�?? Appl. Opt. 41, 6637-6645 (2002).
    [CrossRef] [PubMed]
  11. A. Dubois, L. Vabre, A.C. Boccara, and E. Beaurepaire, �??High-resolution full-field optical coherence tomography with Linnik microscope,�?? Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  12. M. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, and R. P. Salathe, �??Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,�?? Opt. Comm. 202, 29-35 (2002).
    [CrossRef]
  13. M.K. Kim, �??Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,�?? Opt. Exp. 7, 305-310 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305</a>.
    [CrossRef]
  14. A. Dakoff, J. Gass, and M.K. Kim, �??Microscopic three-dimensional imaging by digital interference holography,�?? J. Electronic Imaging 12, 643-647 (2003).
    [CrossRef]
  15. Y. Sando, M. Itoh, and T. Yatagai, �??Color computer-generated holograms from projection images,�?? Opt. Exp. 12, 2487-2493 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487</a>.
    [CrossRef]
  16. I. Yamaguchi, T. Matsumura, and J.I. Kato, �??Phase-shifting color digital holograph,�?? Opt. Lett. 27, 1108-1110 (2002).
    [CrossRef]

Appl. Opt. (4)

J. Electronic Imaging (1)

A. Dakoff, J. Gass, and M.K. Kim, �??Microscopic three-dimensional imaging by digital interference holography,�?? J. Electronic Imaging 12, 643-647 (2003).
[CrossRef]

Opt. Comm. (1)

M. Ducros, M. Laubscher, B. Karamata, S. Bourquin, T. Lasser, and R. P. Salathe, �??Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,�?? Opt. Comm. 202, 29-35 (2002).
[CrossRef]

Opt. Exp. (4)

M.K. Kim, �??Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,�?? Opt. Exp. 7, 305-310 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-9-305</a>.
[CrossRef]

Y. Sando, M. Itoh, and T. Yatagai, �??Color computer-generated holograms from projection images,�?? Opt. Exp. 12, 2487-2493 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487</a>.
[CrossRef]

Z. Ding, Y. Zhao, H. Ren, J.S. Nelson, and Z. Chen, �??Real-time phase-resolved optical coherence tomography and optical Doppler tomography,�?? Opt. Exp. 10, 236-245 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-5-236</a>.
[CrossRef]

C.K. Hitzenberger, P. Trost, P.W. Lo, and Q. Zhou, �??Three-dimensional imaging of the human retina by high-speed optical coherence tomography,�?? Opt. Exp. 11, 2753-2761 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-21-2753</a>.
[CrossRef]

Opt. Lett. (4)

Rep. Prog. Phys. (1)

A.F. Fercher, W. Drexler, C.K. Hitzenberger, and T. Lasser, �??Optical coherence tomography �?? principles and applications,�?? Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Other (1)

C.J.R. Sheppard and D.M. Shotton, Confocal Laser Scanning Microscopy, (Springer, New York, 1997).

Supplementary Material (18)

» Media 1: AVI (1172 KB)     
» Media 2: AVI (255 KB)     
» Media 3: AVI (900 KB)     
» Media 4: AVI (727 KB)     
» Media 5: AVI (262 KB)     
» Media 6: AVI (613 KB)     
» Media 7: AVI (806 KB)     
» Media 8: AVI (383 KB)     
» Media 9: AVI (781 KB)     
» Media 10: AVI (272 KB)     
» Media 11: AVI (97 KB)     
» Media 12: AVI (1913 KB)     
» Media 13: AVI (479 KB)     
» Media 14: AVI (149 KB)     
» Media 15: AVI (923 KB)     
» Media 16: AVI (647 KB)     
» Media 17: AVI (218 KB)     
» Media 18: AVI (924 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Apparatus for color WFOCT. See text for details.

Fig. 2.
Fig. 2.

Phase-shift interference imaging. Four quadrature phase interferograms and the extracted interference images are shown, as well as cross-sectional profiles of the interferograms.

Fig. 3.
Fig. 3.

(a) The spectra of red, green, and blue LED’s. (b) The interference profiles of the LED’s vs. the axial distance z.

Fig. 4.
Fig. 4.

Phase-shift interference imaging of a coin surface: (a) direct image of the object; (b) image of the object with reference wave; (c) contour image extracted by the phase-shift interference; (d) flat view of the accumulated contour images. (image volume=12 mm×9 mm×405 µm; voxels=640×480×82; voxel volume=19 µm×19 µm×5 µm)

Fig. 5.
Fig. 5.

Color WFOCT of a painted coin surface. See text for details

Fig. 6.
Fig. 6.

Color WFOCT movies of a painted coin surface: (a) (1.17MB) xysection images; (b) (0.26MB) xz-section images; (c) (0.90MB) 3D perspective views. (image volume=7.2 mm×7.2 mm×335 µm; voxels=480×480×67; voxel volume=15 µm×15 µm×5 µm)

Fig. 7.
Fig. 7.

Monochrome WFOCT movies of a bee: (a) (0.73MB) xy-section images; (b) (0.26MB) xz-section images; (c) (0.64MB) 3D perspective views; (d) direct image of the specimen. (image volume=6.0 mm×7.8 mm×980 µm; voxels=400×520×99; voxel volume=15 µm×15 µm×10 µm)

Fig. 8.
Fig. 8.

Color WFOCT movies of an insect wing: (a) (0.81MB) xy-section images; (b) (0.38MB) xz-section images; (c) (0.78MB) 3D perspective views; (d) direct image of the specimen. (image volume=7.2 mm×9.6 mm×810 µm; voxels=480×640×82; voxel volume=15 µm×15 µm×10 µm)

Fig. 9.
Fig. 9.

Color WFOCT of a piece of apple skin. See text for details

Fig. 10.
Fig. 10.

Color WFOCT movies of apple skin: (a) (0.27MB) xy-section images; (b) (0.10MB) xz-section images; (c) (1.90MB) 3D perspective views. (image volume=4.7 mm×4.7 mm×170 µm; voxels=313×313×34; voxel volume =15 µm×15 µm×5 µm)

Fig. 11.
Fig. 11.

Color WFOCT movies of a leaf: (a) (0.48MB) xy-section images; (b) (0.15MB) xz-section images; (c) (0.92MB) 3D perspective views. (image volume=6.3 mm×6.3 mm×145 µm; voxels=420×420×30; voxel volume =15 µm×15 µm×5 µm)

Fig. 12.
Fig. 12.

Color WFOCT movies of a leaf: (a) (0.65MB) xy-section images; (b) (0.22MB) xz-section images; (c) (0.93MB) 3D perspective views. (image volume=7.2 mm×7.2 mm×190 µm; voxels=480×640×39; voxel volume =15 µm×15 µm×5 µm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I = I O ( x , y ) + I B ( x , y ) + I R ( x , y ) + 2 I O ( x , y ) I R ( x , y ) cos [ φ i + φ ( x , y ) ]
I 0 = I O + I B + I R + 2 I O I R cos φ
I π 2 = I O + I B + I R 2 I O I R sin φ
I π = I O + I B + I R 2 I O I R cos φ
I 3 π 2 = I O + I B + I R + 2 I O I R sin φ
I O = ( I 0 I π ) 2 + ( I π 2 I 3 π 2 ) 2 16 I R
φ = tan 1 I 3 π 2 I π 2 I 0 I π

Metrics