Abstract

We demonstrated a novel two-dimensional photonic crystal (PC) based Symmetric Mach Zehnder type all-optical switch (PC-SMZ) with InAs quantum dots (QDs) acting as a nonlinear phase-shift source. The 600-µm-long PC-SMZ having integrated wavelength-selective PC-based directional couplers and other PC components exhibited a 15-ps-wide switching-window with 2-ps rise/fall time at a wavelength of 1.3 µm. Nonlinear optical phase shift in the 500-µm-long straight PC waveguide was also achieved at sufficiently low optical-energy (e.g., π phase shift at ~100-fJ control-pulse energy) due to the small saturation energy density of the QDs, which is enhanced in the PC waveguide, without using conventional measures such as SOAs with current-injected gain. The results pave the way to novel PC- and QD-based photonic integrated circuits including multiple PC-SMZs and other novel functional devices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos,. �??High transmission through sharp bends in photonic crystal waveguide,�?? Phys. Rev. Lett. 77, 3787-3790 (1996).
    [CrossRef] [PubMed]
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
    [CrossRef]
  3. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751-5757 (1999).
    [CrossRef]
  4. E. Yablonovich, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  5. S. Jhon, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef]
  6. E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, �??Donor and acceptor modes in photonic band structure,�?? Phys. Rev. Lett. 67, 3380-3383 (1991).
    [CrossRef]
  7. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by single defect in a phtotonic band structure,�?? Nature 407, 608-610 (2000).
    [CrossRef] [PubMed]
  8. Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki and T. Morioka, �??160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,�?? Electron. Lett. 38, 37-38 (2002).
    [CrossRef]
  9. K. Uchiyanma, S. Kawashima, and M. Saruwatari, �??Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),�?? Electron. Lett. 34, 575-576 (1998).
    [CrossRef]
  10. E, A. Camargo, H. H. Chong and R. M. De La Rue, �??2D photonic crystal thermo-optic switch based on AlGaAs/GaAs epitaxial structure,�?? Opt. Express 12, 588-592 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-4-588
    [CrossRef] [PubMed]
  11. H. M. Driel, S. W. Leonard, H.-W. Tan, A. Birner, J. Schilling, S. L. Schweizer, R. B. Wehrspohn, and Ulrich Gosele, �??Tuning 2D photonic crystals,�?? In Proc. SPIE Int. Soc. Opt. Eng. 5511, 1 (2004).
  12. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss and J. S. Roberts, �??Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,�?? Appl. Phys. Lett. 83, 851-853 (2003).
    [CrossRef]
  13. F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre and P. Viktorovich, �??Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,�?? Appl. Phys. Lett. 85, 1880-1883 (2004).
    [CrossRef]
  14. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys. 91, 922-929 (2002).
    [CrossRef]
  15. H. Nakamura, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Ishikawa, and K. Asakawa, �??Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pump/probe ellipsometric polarization analysis,�?? J. Appl. Phys. 96, 1425 (2004).
    [CrossRef]
  16. Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa and K. Inoue, �??Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for alloptical switches,�?? In Proc. CLEO 2004, San Francisco, CWP7 (2004).
  17. K. Tajima, �??All-optical switch-off time unrestricted by carrier lifetime,�?? Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
    [CrossRef]
  18. S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno and K. Tajima, �??Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches�??, in Photonic Integrated Systems, L. A. Eldada, A. R. Pirich, P. L. Repak, R. T. Chen, and J. C. Chon, eds., Proc. SPIE 4998, 21-32 (2003).
  19. H. Nakamura, S. Nishikawa, S. Kohmoto, K. Kanamoto, and K. Asakawa, �??Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements,�?? J. Appl. Phys. 94, 1184-1189 (2003).
    [CrossRef]
  20. H. Nakamura, K. Kanamoto, Y. Watanabe, Y. Nakamura, S. Ohkouchi, Y. Sugimoto, H. Ishikawa, and K. Asakawa, �??Large enhancement of optical nonlinearity using quantum dots embedded in a photonic crystal structure for all-optical switch applications,�?? In Proc. LEOS 2002, Glasgow, ThP2 (2002).
  21. Y. Nakamura, H. Nakamura, S. Ohkouchi, N. Ikedca, Y. Sugimoto and K. Asakawa, �??Selective formation of high-density and high-uniformity InAs/GaAs quantum dots for ultra-small and ultra-fast all-optical switches,�?? In Proc. 29th Int. Symp. Compound Semiconductors, Lausanne, Switzerland, 174, 133 (2002).
  22. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa and K. Inoue, �??Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,�?? Opt. Express 12, 1090 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1090
    [CrossRef] [PubMed]
  23. K. Kanamoto, H. Nakamura, Y. Nakamura, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, H. Ishikawa and K. Asakawa, �??Optical nonlinearity enhancement by the photonic-crystal waveguide with a InAs quantum dot core layer,�?? In Proc. ECOC 2004, Stockholm, Sweden, We2.1.2 (2004).
  24. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902-253905 (2001).
    [CrossRef] [PubMed]
  25. Y. Nakamura, N. Ikeda, S. Ohkouchi, Y. Sugimoto, H. Nakamura and K. Asakawa, �??Two-dimensional quantum-dot arrays with periods of 70-100 nm on artificially prepared nanoholes,�?? Jpn. J. Appl. Phys. 43, L362-364 (2004).
    [CrossRef]

Appl. Phys. Lett.

A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss and J. S. Roberts, �??Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal wageguides,�?? Appl. Phys. Lett. 83, 851-853 (2003).
[CrossRef]

F. Raineri, C. Cojocaru, P. Monnier, A. Levenson, R. Raj, C. Seassal, X. Letartre and P. Viktorovich, �??Ultrafast dynamics of the third-order nonlinear response in a two-dimensional InP-based photonic crystal,�?? Appl. Phys. Lett. 85, 1880-1883 (2004).
[CrossRef]

Electron. Lett.

Shake, H. Takara, K. Uchiyama, I. Ogawa, T. Kitoh, T. Kitagawa, M. Okumoto, K. Magari, Y. Suzuki and T. Morioka, �??160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC,�?? Electron. Lett. 38, 37-38 (2002).
[CrossRef]

K. Uchiyanma, S. Kawashima, and M. Saruwatari, �??Multi-channel output all-optical OTDM demultiplexer using XPM-induced chirp compensation (MOXIC),�?? Electron. Lett. 34, 575-576 (1998).
[CrossRef]

J. Appl. Phys.

Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai, and K. Inoue, �??Fabrication and characterization of different types of two-dimensional AlGaAs photonic crystal slabs,�?? J. Appl. Phys. 91, 922-929 (2002).
[CrossRef]

H. Nakamura, K. Kanamoto, Y. Nakamura, S. Ohkouchi, H. Ishikawa, and K. Asakawa, �??Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pump/probe ellipsometric polarization analysis,�?? J. Appl. Phys. 96, 1425 (2004).
[CrossRef]

H. Nakamura, S. Nishikawa, S. Kohmoto, K. Kanamoto, and K. Asakawa, �??Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements,�?? J. Appl. Phys. 94, 1184-1189 (2003).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Nakamura, N. Ikeda, S. Ohkouchi, Y. Sugimoto, H. Nakamura and K. Asakawa, �??Two-dimensional quantum-dot arrays with periods of 70-100 nm on artificially prepared nanoholes,�?? Jpn. J. Appl. Phys. 43, L362-364 (2004).
[CrossRef]

K. Tajima, �??All-optical switch-off time unrestricted by carrier lifetime,�?? Jpn. J. Appl. Phys. 32, L1746-1749 (1993).
[CrossRef]

Nature

S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by single defect in a phtotonic band structure,�?? Nature 407, 608-610 (2000).
[CrossRef] [PubMed]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, �??Photonic crystals: putting a new twist on light,�?? Nature 386, 143-149 (1997).
[CrossRef]

Opt. Express

Phys. Rev. B

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B 60, 5751-5757 (1999).
[CrossRef]

Phys. Rev. Lett.

E. Yablonovich, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. Jhon, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef]

E. Yablonovich, T. J. Gmitter, R. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, �??Donor and acceptor modes in photonic band structure,�?? Phys. Rev. Lett. 67, 3380-3383 (1991).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos,. �??High transmission through sharp bends in photonic crystal waveguide,�?? Phys. Rev. Lett. 77, 3787-3790 (1996).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,�?? Phys. Rev. Lett. 87, 253902-253905 (2001).
[CrossRef] [PubMed]

Other

K. Kanamoto, H. Nakamura, Y. Nakamura, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, H. Ishikawa and K. Asakawa, �??Optical nonlinearity enhancement by the photonic-crystal waveguide with a InAs quantum dot core layer,�?? In Proc. ECOC 2004, Stockholm, Sweden, We2.1.2 (2004).

H. Nakamura, K. Kanamoto, Y. Watanabe, Y. Nakamura, S. Ohkouchi, Y. Sugimoto, H. Ishikawa, and K. Asakawa, �??Large enhancement of optical nonlinearity using quantum dots embedded in a photonic crystal structure for all-optical switch applications,�?? In Proc. LEOS 2002, Glasgow, ThP2 (2002).

Y. Nakamura, H. Nakamura, S. Ohkouchi, N. Ikedca, Y. Sugimoto and K. Asakawa, �??Selective formation of high-density and high-uniformity InAs/GaAs quantum dots for ultra-small and ultra-fast all-optical switches,�?? In Proc. 29th Int. Symp. Compound Semiconductors, Lausanne, Switzerland, 174, 133 (2002).

S. Nakamura, T. Tamanuki, M. Takahashi, Y. Ueno and K. Tajima, �??Ultrafast optical signal processing with symmetric-Mach-Zehnder-type all-optical switches�??, in Photonic Integrated Systems, L. A. Eldada, A. R. Pirich, P. L. Repak, R. T. Chen, and J. C. Chon, eds., Proc. SPIE 4998, 21-32 (2003).

Y. Tanaka, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa and K. Inoue, �??Fabrication and characterization of symmetric Mach-Zehnder structure based on 2D photonic crystal waveguide for alloptical switches,�?? In Proc. CLEO 2004, San Francisco, CWP7 (2004).

H. M. Driel, S. W. Leonard, H.-W. Tan, A. Birner, J. Schilling, S. L. Schweizer, R. B. Wehrspohn, and Ulrich Gosele, �??Tuning 2D photonic crystals,�?? In Proc. SPIE Int. Soc. Opt. Eng. 5511, 1 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of two-dimensional photonic-crystal-based Symmetric-Mach-Zehnder interferometer all-optical switch (PC-SMZ). (a) Schematic of PC-SMZ chip with InAs quantum dots as a nonlinear source. (b) Configuration of PC waveguides and two kinds of PC-based directional couplers. (c) Principle of narrow switching window in the PC-SMZ when operated with time-differential phase modulation [17]. (d) Origin of the nonlinear optical phase shift caused by the detuned optical excitation of the QDs.

Fig. 2.
Fig. 2.

Nonlinear optical properties in the InAs QDs induced by control pulses (CPs). Decay characteristics in the NLO-induced phase shift and the amplitude change in the transmitted signal pulses (SPs). The peak wavelength and pulse width were 1285 nm and 2 ps for the CP and 1295 nm and 0.2 ps for the SP, respectively. The net pulse energies were estimated to be 20 fJ/pulse (CP) and 0.6 fJ/pulse (SP), respectively.

Fig. 3.
Fig. 3.

Measured NLO-induced phase shifts in the PC waveguide (red circles) and the slab region (green circles) as a function of peak wavelength of the SP, together with the corresponding group indexes (solid curves). The net pulse energy and peak wavelength of the CP were 120 fJ/pulse and 1285 nm, respectively.

Fig. 4.
Fig. 4.

NLO-induced phase shifts in the PC waveguide (red circles) and ridge waveguide (blue circles) as a function of the net CP energy. The wavelengths of the CP and SP and the delay between two pulses were 1285 nm, 1305 nm, and 20 ps, respectively.

Fig. 5.
Fig. 5.

Schematic and photographs of an air-bridge-type PC-SMZ. (a) Schematic configuration of PC waveguide components. (b) Plan-view optical micrograph of the PC-SMZ chip. (c) SEM photograph of an input port area including a-PCDC and b-PCDC. (d) SEM photograph of the cleaved output port area.

Fig. 6.
Fig. 6.

Switching properties of the PC-SMZ. Decay characteristics of the SP transmission measured at the bar port. Slow components of the SP in the on-state of the ON-CP (blue line) are cancelled and a narrow switching window is realized by introducing the OFF-CP (red line).

Fig. 7.
Fig. 7.

Switching properties of the PC-SMZ. (a) Switching response of the SP for the cross port (blue line) and the bar port (red line). Complementary energy transfer between the two ports is observed in the switching-window due to the Mach-Zehnder interference. (b) Switching-windows at various time delays between ON-CP and OFF-CP.

Metrics