Abstract

An experimental study to address issues encountered in the determination of surface bi-directional reflectivity and emissivity of materials [3–5µm] region has been conducted in outdoors conditions. The measurement protocol included radiometric infrared camera acquisitions in both [3–5µm] (band-2) and [8-14µm] (band-3). The band-2 bi-directional reflectivity is obtained from a sequence of sunlit and shade measurements. Best results are found with measurements relative to a diffuse aluminum reflector. Direct inversion of band-2 radiometric signal is unstable. A multi-temporal method is introduced and the slope of the linear regression is the searched emisssivity. A detailed analysis is conducted to assess the impact of different sources of systematic errors. The proposed method is found to have a good potential with an estimated measurement error in the range of 2%.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.W. Salisbury and D.M. D�??Aria, �??Emissivity of terrestrial materials in the 3-5 µm atmospheric window�??, Remote Sens. Environ. 47, 345-361 (1994)
    [CrossRef]
  2. J.C. Price, �??Land Surface Temperature Measurements from the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer�??, J. Geophys. Res. 89 (D5), 7231-7237 (1984)
    [CrossRef]
  3. F. Becker, �??The impact of spectral emissivity on the measurement of land surface temperature from a satellite�??, Int. J. Remote Sensing 8, 1509-1522 (1987)
    [CrossRef]
  4. Z. Wan and J. Dozier, �??Land-Surface Temperature Measurement from Space : Physical Principles and Inverse Modelling�??, IEEE Trans. Geosci. Remote Sens. 27, 268-277 (198
    [CrossRef]
  5. Z. Qin and A. Karnieli, �??Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data�??, Int. J. Remote Sens. 20, 2367-2393 (1999)
    [CrossRef]
  6. A. Gillespie, S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook and A.B. Kahle, �??A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images�??, IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998)
    [CrossRef]
  7. S. Hook, A.R. Gabell, A.A. Green and P.S. Kealy, �??A Comparison of Techniques for Extracting Emissivity Information from Thermal Infrared Data for Geologic Studies�??, Remote Sens. Environ., 42, (2), 123-135 (1992)
    [CrossRef]
  8. F.E. Nicodemus, �??Reflectance Nomenclature and Directional Reflectance and Emissivity,�?? Appl. Opt. 9, 1474-1475 (1970)
    [CrossRef] [PubMed]
  9. L. Poutier, X. Briottet, G. Serrot, C. Miesch, L. Coret, A. Malaplate, F. Lemaitre, V. Demarez, Y.H. Kerr, G. Marty, F. Lavenu, J.C. Calvet, N. Fritz, M.P. Stoll, F. Nerry, P. Barillot, �??PIRRENE: a multidisciplinary research program about field radiometry,�?? Proceedings of OPTRO 2002, Paris, January 2002.
  10. W.C. Snyder and Z. Wan, �??Surface temperature correction for active infrared reflectance measurements of natural materials,�?? Appl. Opt. 35, 2216-2220 (1996)
    [CrossRef] [PubMed]
  11. W.C. Snyder, Z. Wan, Y. Zhang and Y.Z. Feng, �??Thermal Infrared (3-14 µm) Bidirectional Reflectance measurements of Sands and Soils�??, Remote Sens. Environ., 60, 101-109 (1997)
    [CrossRef]
  12. F.X. Kneizys, L.W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Robertson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery & S.A. Clough, �??The MODTRAN 2/3 Report and Lowtran 7 MODEL�?? Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA 01731-3010 (1996).

Appl. Opt. (2)

IEEE Trans. Geosci. Remote Sens. (2)

Z. Wan and J. Dozier, �??Land-Surface Temperature Measurement from Space : Physical Principles and Inverse Modelling�??, IEEE Trans. Geosci. Remote Sens. 27, 268-277 (198
[CrossRef]

A. Gillespie, S. Rokugawa, T. Matsunaga, J.S. Cothern, S. Hook and A.B. Kahle, �??A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images�??, IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998)
[CrossRef]

Int. J. Remote Sens. (1)

Z. Qin and A. Karnieli, �??Progress in the remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data�??, Int. J. Remote Sens. 20, 2367-2393 (1999)
[CrossRef]

Int. J. Remote Sensing (1)

F. Becker, �??The impact of spectral emissivity on the measurement of land surface temperature from a satellite�??, Int. J. Remote Sensing 8, 1509-1522 (1987)
[CrossRef]

J. Geophys. Res. (1)

J.C. Price, �??Land Surface Temperature Measurements from the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer�??, J. Geophys. Res. 89 (D5), 7231-7237 (1984)
[CrossRef]

Phillips Laboratory (1)

F.X. Kneizys, L.W. Abreu, G.P. Anderson, J.H. Chetwynd, E.P. Shettle, A. Berk, L.S. Bernstein, D.C. Robertson, P. Acharya, L.S. Rothman, J.E.A. Selby, W.O. Gallery & S.A. Clough, �??The MODTRAN 2/3 Report and Lowtran 7 MODEL�?? Phillips Laboratory, Geophysics Directorate, PL/GPOS, Hanscom AFB, MA 01731-3010 (1996).

Proceedings of OPTRO (1)

L. Poutier, X. Briottet, G. Serrot, C. Miesch, L. Coret, A. Malaplate, F. Lemaitre, V. Demarez, Y.H. Kerr, G. Marty, F. Lavenu, J.C. Calvet, N. Fritz, M.P. Stoll, F. Nerry, P. Barillot, �??PIRRENE: a multidisciplinary research program about field radiometry,�?? Proceedings of OPTRO 2002, Paris, January 2002.

Remote Sens. Environ (1)

S. Hook, A.R. Gabell, A.A. Green and P.S. Kealy, �??A Comparison of Techniques for Extracting Emissivity Information from Thermal Infrared Data for Geologic Studies�??, Remote Sens. Environ., 42, (2), 123-135 (1992)
[CrossRef]

Remote Sens. Environ. (2)

W.C. Snyder, Z. Wan, Y. Zhang and Y.Z. Feng, �??Thermal Infrared (3-14 µm) Bidirectional Reflectance measurements of Sands and Soils�??, Remote Sens. Environ., 60, 101-109 (1997)
[CrossRef]

J.W. Salisbury and D.M. D�??Aria, �??Emissivity of terrestrial materials in the 3-5 µm atmospheric window�??, Remote Sens. Environ. 47, 345-361 (1994)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig 1.
Fig 1.

Photo of artificial scene and identification of component materials

Fig. 2.
Fig. 2.

Band 2 spectral signatures of material: left: natural materials; right: artificial material

Fig. 3.
Fig. 3.

Diurnal variation of the Fontainebleau sand: comparison between band 3 camera corrected for air layer and emissivity and ground band 3 radiometer corrected for emissivity

Fig. 4.
Fig. 4.

(a) Target dependent spectrally average solar irradiance 〈E sun,2 (θs )〉target for two cases: concrete and Fontainebleau sand; (b) 〈E sun,2 (θs )〉target/〈E sun,2 (θs )〉ref for the different targets

Fig. 5.
Fig. 5.

Retrieved bi-directional reflectivity of the different scene elements as a function of sun zenith angle

Fig. 6.
Fig. 6.

Relative and absolute hemispherical reflectivity vs. laboratory measurements via integrating sphere

Fig. 7.
Fig. 7.

Multi-temporal regression method: examples for three different targets. Sunlit and shadow data for June 26, 2000. The slope of the straight line is the laboratory emissivity.

Tables (4)

Tables Icon

Table 1. Materials composing the scene

Tables Icon

Table 2. Technical characteristics of the two cameras

Tables Icon

Table 3. Impact of accounting for diurnal variation of atmospheric profile, sunlit data of June 26, 2000. Column 3: regression slope corrected for diurnal variation; column 4: regression slope without diurnal variation (same profile for whole day).

Tables Icon

Table 4. Summary of MRT method (data of June 26th & 27th): comparison of MRT slope with laboratory measured emissivity

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

L λ t arg et ( θ ) = ε λ ( θ ) L λ 0 ( T S ) + ρ b , λ ( θ , φ ; θ , φ ) L λ atm ( θ ) cos ( θ ) +
+ ρ b , λ ( θ , φ ; θ s , φ s ) E sun , λ ( θ s )
ε λ ( θ ) = 1 ρ h , λ ( θ ) = 1 2 π sr ρ b , λ ( θ , θ ; φ φ ) cos θ d ω
L λ t arg et ( θ ) = ε λ ( θ ) L λ 0 ( T s ) + [ 1 ε λ ( θ ) ] L λ atm ( θ ) + [ 1 ε λ ( θ ) ] F λ t arg et ( θ s , θ ) ( 1 π ) E sun , λ ( θ s )
L λ sensor ( θ ) = L λ t arget ( θ ) τ λ atm ( θ ) + L λ atm ( θ )
[ L λ sensor ( θ ) ] sunlit [ L λ sensor ( θ ) ] shade = ρ b , λ ( θ s , θ ) E sun , λ ( θ s )
ε λ ( θ ) = { ( F λ sensor ( θ ) L λ atm ( θ ) ) τ λ atm ( θ ) L λ atm F λ t arg et ( θ s , θ ) L sun , λ ( θ s ) } { L λ 0 ( T s ) L λ atm F λ t arg et ( θ s , θ ) L sun , λ ( θ s ) }
L i sensor ( θ ) = i L λ sensor ( θ ) f i ( λ ) d λ
= i ε λ ( θ ) L λ 0 ( T s ) f i ( λ ) τ λ ( θ ) d λ + i f i ( λ ) τ λ ( θ ) 2 π sr ρ b , λ ( θ , θ ) L λ atm ( θ ) cos θ d ω d λ
+ i ρ b , λ ( θ s , θ ) E sun , λ ( θ s ) f i ( λ ) τ λ ( θ ) d λ + i L λ atm ( θ ) f i ( λ ) d λ
X i = i X λ f ̅ i ( λ ) d λ f ̅ i ( λ ) = f i ( λ ) i f i ( λ ) d λ
ε i = i ε λ f ̅ i ( λ ) d λ ; ρ b , i ( θ s , θ ) = i ρ b , λ ( θ s , θ ) f ̅ i ( λ ) d λ ; ρ h , i ( θ ) = i ρ h , λ ( θ ) f ̅ i ( λ ) d λ
L i sensor ( θ ) i f i ( λ ) d λ = ε i ( θ ) i ε λ ( θ ) L λ 0 ( T s ) τ λ atm ( θ ) f ̅ i ( λ ) d λ i ε λ ( θ ) f ̅ i ( λ ) d λ
+ [ 1 ε i ( θ ) ] i ρ h , λ ( θ ) L λ τ λ atm ( θ ) f ̅ i ( λ ) d λ i ρ h , λ ( θ ) f ̅ i ( λ ) d λ
+ ρ b , i ( θ s , θ ) i ρ h , λ ( θ s , θ ) F λ ( θ s , θ ) L sun , λ ( θ s ) τ λ atm ( θ ) f ̅ i ( λ ) d λ i ρ p , λ ( θ s , θ ) f ̅ i ( λ ) d λ
+ i L λ atm ( θ ) f ̅ i ( λ ) d λ
L i , λ c ( T bi ) sensor ( θ ) = ε i ( θ ) L i , λ c ( T s ) + [ 1 ε i ( θ ) ] L i + ρ b , i ( θ s , θ ) E sun , i ( θ s ) L i atm ( θ )
[ L 2 , λ c sensor ( θ ) ] sunlit [ L 2 , λ c sensor ( θ ) ] shade = ρ b , 2 ( θ s , θ ) E sun , 2 ( θ s )
ρ b , 2 t arg et ( θ s , θ ) = ρ b , 2 ref ( θ s , θ ) [ { [ L 2 , λ c sensor ( θ ) ] sunlit [ L 2 , λ c sensor ( θ ) ] shad } t arg et { [ L 2 , λ c sensor ( θ ) ] sunlit [ L 2 , λ c sensor ( θ ) ] shad } ref ] [ E sun , 2 ( θ s ) ref E sun , 2 ( θ s ) t arg et ]
ε 2 ( θ ) = { [ L 2 , λ c sensor ( θ ) L 2 atm ( θ ) ] L 2 atm F t arg et ( θ s , θ ) L sun , 2 ( θ s ) } { L λ c 0 ( T s ) L 2 atm F t arg et ( θ s , θ ) L sun , 2 ( θ s ) }
Δ ε ε 1 T 2 + 1 T e T 2 Δ T 2 + 1 T e T s Δ T s + ( 1 ε ) 1 T e T 2 + n 1 T 2 Δ T e

Metrics