Abstract

We demonstrate an all-fiber Er chirped pulse amplification (CPA) system based on compression in photonic band gap fiber (PBGF) that produces 570 fs pulses with 310 nJ pulse energy. The dispersion of the PBGF is measured precisely and used to design a dispersion-matched nonlinearly-chirped fiber Bragg grating stretcher. We analyze the trade-offs of such all-fiber CPA system design and compare different PBGFs in terms of the derived figure of merit. Such system architecture should be scalable to few micro-Joule level pulse energies close to the compressor nonlinearity limit when PBGFs with improved figure of merit become available.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. IMRA America, Inc. product listing, <a href= "http://www.imra.com">http://www.imra.com</a>.
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  3. D. Ouzounov, F. Ahmad, D. Müller, N. Venkataraman, M. Gallagher, K. Koch, and A. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702 (2003).
    [CrossRef] [PubMed]
  4. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  6. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, "All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber," Opt. Express 11, 3332 - 3337 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3332</a>.
    [CrossRef] [PubMed]
  7. C. J. S. de Matos, J. R. Taylor, T. P. Hansen, K. P. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2832</a>.
    [CrossRef] [PubMed]
  8. C. J. S. de Matos and J. R. Taylor, "Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40�? pulse compression using air-core fiber and conventional erbium-doped fiber amplifier," Opt. Express 12, 405-409 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-405<a/>.
    [CrossRef] [PubMed]
  9. D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Communications 56, 219-221 (1985).
    [CrossRef]
  10. S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Inst. 69, 1207-1223 (1998).
    [CrossRef]
  11. A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001).
    [CrossRef]
  12. G. Imeshev, I. Hartl, and M. E. Fermann, "Chirped pulse amplification using a nonlinearly-chirped fiber Bragg grating matched to the Treacy compressor," Opt. Lett. 29, 679-681 (2004).
    [CrossRef] [PubMed]
  13. B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", in Optical Fiber Communication, Vol. 95 of OSA Trends in Optics and Photonics, Technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2004), paper PDP24.
  14. BlazePhotonics Ltd. product listing, <a href= "http://www.blazephotonics.com">http://www.blazephotonics.com</a>.
  15. K. Naganuma, K. Mogi, and H. Yamada, "Group-delay measurement using the Fourier transform of an interferometric cross correlation generated by white light," Opt. Lett. 15, 393-395 (1990).
    [CrossRef] [PubMed]
  16. S. Diddams and J.-C. Diels, "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996).
    [CrossRef]
  17. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]

IEEE J. Sel. Topics in Quantum Electron.

A. Galvanauskas, "Mode-scalable fiber-based chirped pulse amplification systems," IEEE J. Sel. Topics in Quantum Electron. 7, 504-517 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Nature

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, "Low-loss hollow-core silica/air photonic bandgap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

OFC 2004

B. J. Mangan, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, F. Couny, M. Lawman, M. Mason, S. Coupland, R. Flea, H. Sabert, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Low loss (1.7 dB/km) hollow core photonic bandgap fiber", in Optical Fiber Communication, Vol. 95 of OSA Trends in Optics and Photonics, Technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2004), paper PDP24.

Opt. Communications

D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Communications 56, 219-221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Inst.

S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, "High power ultrafast lasers," Rev. Sci. Inst. 69, 1207-1223 (1998).
[CrossRef]

Science

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

D. Ouzounov, F. Ahmad, D. Müller, N. Venkataraman, M. Gallagher, K. Koch, and A. Gaeta, "Generation of megawatt optical solitons in hollow-core photonic band-gap fibers," Science 301, 1702 (2003).
[CrossRef] [PubMed]

Other

IMRA America, Inc. product listing, <a href= "http://www.imra.com">http://www.imra.com</a>.

BlazePhotonics Ltd. product listing, <a href= "http://www.blazephotonics.com">http://www.blazephotonics.com</a>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Group delay and (b) the dispersion of the AIR-10-1550 PBGF as a function of wavelength.

Fig. 2.
Fig. 2.

Sketch of the all-fiber CPA system based on pulse stretching in the nonlinearly-chirped FBG, amplification in two Er pre-amplifiers, the Er/Yr LMA power amplifier and compression in the double-passed PBGF.

Fig. 3.
Fig. 3.

Autocorrelation traces of the pulses output from the all-fiber CPA system; calculated autocorrelation for a transform-limited pulse, 750 fs FWHM (dotted line); measured autocorrelation for the 73-nJ pulses, 1.04 ps FHWM (dashed line); measured autocorrelation for the 310-nJ pulses, 930 fs FWHM (solid line).

Fig. 4.
Fig. 4.

Measured spectrum of the 310-nJ pulses output from the all-fiber CPA system.

Tables (1)

Tables Icon

Table 1. Comparison of different PBGFs

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

U = β P peak D L Δ λ 10 α L 10 ,
U = β P peak Δ λ FOM ,
B = γ P ( z ) d z = γ P 0 L eff ,
L eff = 1.4 L D .
U NL 0.55 Δ λ D γ .

Metrics