Abstract

We report a novel external cavity laser diode (λ=1.5 µm). An intra-cavity liquid crystal pixel mirror allows digitally tuning of the laser wavelength to more than 40 wavelength channels of 100 GHz spacing according to the International Telecommunication Union (ITU) grid. Laser wavelength can further be fine-tuned by varying the driving voltages applied to an intra-cavity planar nematic liquid crystal phase plate. With a cell 52.3 µm in thickness, the output frequency can be continuously tuned over 1.89 GHz. The root-mean-square voltage required for driving the phase plate was from 1.00 to 4.56 volts.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae and T. Sasaki, �??Wavelength-selectable microarray light source for wide-band DWDM applications,�?? Select. Topics Quantum. ElectronIEEE J.. 8, 1341-1348 (2002)
    [CrossRef]
  2. R. O�??Dowd, S. O�??Duill, G. Mulvihill, N. O�??Gorman, and Y. Yu, �??Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,�?? IEEE J. Select. Topics Quantum Electron. 7, 259-269 (2001).
    [CrossRef]
  3. C. -K. Chan, K. L. Sherman, and M. Zirngibl, �??A fast 100-channel wavelength-tunable transmitter for optical packet switching,�?? IEEE Photon. Technol. Lett. 13, 729-731 (2001).
    [CrossRef]
  4. M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, �??16-channel digitally tunable external-cavity laser with nanosecond switching time,�?? IEEE Photon. Technol. Lett. 15, 371- 373 (2003).
    [CrossRef]
  5. X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology, " Appl. Phys. Lett. 84, 329-331 (2004).
    [CrossRef]
  6. N. J. C. Libatique, li Wang, and R. K. Jain, �??Single-longitudinal-mode tunable WDM-channel-selectable fiber laser,�?? Opt. Express 10, 1503-1507 (2002).
    [CrossRef] [PubMed]
  7. C. �??L. Pan, S-H Tsai, R-P Pan,C-R Sheu , and S. C. Wang, "Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity, " Electron. Lett. 35, 1472-1473 (1999)
    [CrossRef]
  8. R. �??P. Pan, H.-C. Tung, C. �??R. Sheu, M. �??J. Huang and C. �??L. Pan , �??Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,�?? in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien Editors, Proceedings of SPIE, 4658, 91-100 (2002)
  9. J. Struckmeier, A. Euteneuer, B. Smarsly, M. Breede, M. Born, and M. Hofmann, "Electronically tunable external-cavity laser diode," Opt. Lett. 24, 1573-1574 (1999).
    [CrossRef]
  10. M. Breede, et al., "Fourier-transform external cavity lasers," Opt. Commun. 207, 261-271 (2002).
    [CrossRef]
  11. Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan and Ci-Ling Pan, "Fine tuning of a diode laser wavelength with a liquid crystal intracavity element, " Opt. Eng. 43, 234-238 (2004).
    [CrossRef]
  12. Yu-Ping Lan, Ru-Pin Pan and Ci-Ling Pan, "Mode-hop-free fine-tuning of an external-cavity diode laser wavelength with an intracavity liquid crystal cell, " Opt. Lett. 29, 510-512 (2004).
    [CrossRef] [PubMed]
  13. M. -J. Huang, et al., "Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities," IEEE Photon. Technol. Lett., 16, 2254-2256 (2004).
    [CrossRef]
  14. S. Brugioni, S. Faetti Pan and R. Meucci, "Mid-infrared refractive indices of the nematic mixture," Liquid Crystals 30, 927-930
    [CrossRef]
  15. Shin-Tson. Wu, "Birefringence dispersions of liquid crystals, " Phys. Rev. A 33, 1270-1274 (1986)
    [CrossRef] [PubMed]
  16. A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, �??Side-mode gain in grating-tuned extendedcavity semiconductor lasers: investigation of stable single-mode operation conditions,�?? IEEE J. Quantum Electron. 38, 390-401 (2002).
    [CrossRef]
  17. A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, �??Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,�?? IEEE J. Quantum Electron. 40, 970-981 (2004).
    [CrossRef]

Appl. Phys. Lett. (1)

X. M. Zhang, A. Q. Liu, D. Y. Tang and C. Lu, "Discrete wavelength tunable laser using microelectromechanical systems technology, " Appl. Phys. Lett. 84, 329-331 (2004).
[CrossRef]

Electron. Lett. (1)

C. �??L. Pan, S-H Tsai, R-P Pan,C-R Sheu , and S. C. Wang, "Tunable semiconductor laser with liquid crystal pixel mirror in grating-loaded external cavity, " Electron. Lett. 35, 1472-1473 (1999)
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Godard, S. G. Pauliat, G. Roosen, P. Graindorge, and P. Martin, �??Side-mode gain in grating-tuned extendedcavity semiconductor lasers: investigation of stable single-mode operation conditions,�?? IEEE J. Quantum Electron. 38, 390-401 (2002).
[CrossRef]

IEEE J. Quantum Electron. 40 (1)

A. Godard, S. G. Pauliat, G. Roosen, and E. Ducloux, �??Modal competition via four-wave mixing in single-mode extended-cavity semiconductor lasers,�?? IEEE J. Quantum Electron. 40, 970-981 (2004).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

R. O�??Dowd, S. O�??Duill, G. Mulvihill, N. O�??Gorman, and Y. Yu, �??Frequency plan and wavelength switching limits for widely tunable semiconductor transmitters,�?? IEEE J. Select. Topics Quantum Electron. 7, 259-269 (2001).
[CrossRef]

IEEE J.Select. Topics Quantum. Electron (1)

H. Hatateyama, K. Kudo, Y. Yokoyama, K. Naniwae and T. Sasaki, �??Wavelength-selectable microarray light source for wide-band DWDM applications,�?? Select. Topics Quantum. ElectronIEEE J.. 8, 1341-1348 (2002)
[CrossRef]

IEEE Photon. Technol. Lett. (3)

C. -K. Chan, K. L. Sherman, and M. Zirngibl, �??A fast 100-channel wavelength-tunable transmitter for optical packet switching,�?? IEEE Photon. Technol. Lett. 13, 729-731 (2001).
[CrossRef]

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zringibl, �??16-channel digitally tunable external-cavity laser with nanosecond switching time,�?? IEEE Photon. Technol. Lett. 15, 371- 373 (2003).
[CrossRef]

M. -J. Huang, et al., "Multimode optical demultiplexer for DWDM with liquid crystal enabled functionalities," IEEE Photon. Technol. Lett., 16, 2254-2256 (2004).
[CrossRef]

Liquid Crystals (1)

S. Brugioni, S. Faetti Pan and R. Meucci, "Mid-infrared refractive indices of the nematic mixture," Liquid Crystals 30, 927-930
[CrossRef]

Opt. Commun. (1)

M. Breede, et al., "Fourier-transform external cavity lasers," Opt. Commun. 207, 261-271 (2002).
[CrossRef]

Opt. Eng. (1)

Yu-Ping Lan, Chao-Yuan Chen, Ru-Pin Pan and Ci-Ling Pan, "Fine tuning of a diode laser wavelength with a liquid crystal intracavity element, " Opt. Eng. 43, 234-238 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

Shin-Tson. Wu, "Birefringence dispersions of liquid crystals, " Phys. Rev. A 33, 1270-1274 (1986)
[CrossRef] [PubMed]

SPIE (1)

R. �??P. Pan, H.-C. Tung, C. �??R. Sheu, M. �??J. Huang and C. �??L. Pan , �??Wavelength Tunable Semiconductor Laser with a Liquid Crystal Pixel Mirror,�?? in Liquid Crystal Materials, Devices VIII Applications, L. C. Chien Editors, Proceedings of SPIE, 4658, 91-100 (2002)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the ECDL digitally tuned with the LCPM (see inset) and fine-tuned with an intracavity NLC phase plate (see inset).

Fig. 2.
Fig. 2.

The transmission intensity of the (a) TNLC cell in the LCPM and (b) NLC phase plate.

Fig. 3.
Fig. 3.

Digitally step-tuned laser output spectrum for 20 ITU channels near the gain center.

Fig. 4.
Fig. 4.

Frequency fine-tuning of the ECDL. (a) Frequency shift observed by a scanning Fabry-Perot Interferometer (b) Measured and predicted fine-tuning range. g1: measured frequency, g2: predicted frequency

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = Δ cos θ r Δ x f lens ,
Δ l l = Δ f f ,

Metrics