Abstract

High average power nanosecond pulsed light is obtained using a compact all solid state Nd:YAG laser. The laser is operated in Q-switched mode at the 1.3 micron fundamental and internally frequency tripled using two LiB3O5 (LBO) crystals. 4.3 W average power at 440 nm was demonstrated at 3.5 kHz and a pulse width of 150±10 ns (FWHM). The beam quality of M2 value is 5±1 in both dimensions. The short-term average power stability of the light source is better than 5.6%. Spectral selecting is proposed to increase production efficiency at 440 nm.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. L. Marshall, �??Many variant lasers compete in the blue,�?? Laser Focus World, October, 79-83 (2004)
  2. T. Y. Fan and R. Byer, �??Continuous-wave operation of a room-temperature, diode-laser-pumped, 946-nm Nd:YAG laser,�?? Opt. Lett. 12, 809-811 (1987)
    [CrossRef] [PubMed]
  3. V. Pruneri et al, �??49 mW of cw blue light generated by first-order quasi-phase-matched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,�?? Opt. Lett. 19, 2375-2377 (1995)
    [CrossRef]
  4. C. Czeranowsky,et al, �??Continous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm,�?? Opt.Commun. 205, 361-365 (2002)
    [CrossRef]
  5. C. Czeranowsky,E.Heumann,G.Huber, �??All-solid-state continuous-wave frequency-doubled Nd:YAG BiBO laser with 2.8-W output power at 473 nm,�?? Opt. Lett. 28, 432-434 (2003)
    [CrossRef]
  6. B. Ruffing, A. Nebel, R. Wallenstein, �??High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,�?? Appl. Phys. B. 72, 137-149 (2001)
    [CrossRef]
  7. Nebel A and Wallenstein R E, �??Concepts and performance of solid state RGB laser sources for large-frame laser projection displays,�?? in Projection Displays 2000: Sixth in a Series, Ming H. Wu, Eds., Proc. SPIE 3954, 163-166 (2000)
  8. D. Lee and P. F. Moulton, �??A compact OPO-based RGB source,�??in Projection Displays VII, Ming H. Wu, Eds., Proc. SPIE 4294, 60-66 (2001)
  9. D. Lee et al, �??OPO-based compact laser projection display,�?? in Cockpit Displays VII: Displays for Defense Applications, Darrel G. Hopper,Eds., Proc. SPIE 4362, 203-212 (2001)
  10. X. Mu and Y. J. Ding, �??Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,�?? Opt. Lett. 26, 623-625 (2001)
    [CrossRef]
  11. D. Krennrich and R. Wallenstein, �??Powerful red and blue laser radiation generated by frequency doubling and tripling the output of a mode locked 1342nm Nd: YVO4-laser in pp-KTP,�?? CLEO 2002, 167 (2002)
  12. Herwig W.Kogelnik et al, �??Astigmatically compensated cavities for CW dye lasers,�?? IEEE J.Quantum Electron. 8, 373-379, (1972)
    [CrossRef]
  13. W. Koechner, Solid-state laser engineering (5th ed, Berlin, Springer, 1999)
  14. Paolo Laporta. �??Design criteria for mode size optimization in diode-pumped solid-state lasers,�?? IEEE J. Quantum Electron. 27, 2319-2326 (1991)
    [CrossRef]
  15. Y. Inoue, S. Konno, T. Kojima, S. Fujikawa, �??High-power red beam generation by frequency-doubling of a Nd:YAG laser,�?? IEEE J.Quantum Electron. 35, 1737-1740 (1999).
    [CrossRef]
  16. Sun Z P et al, �??Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,�?? Opt Commun. 241, 167-172 (2004).
    [CrossRef]

Appl. Phys. B

B. Ruffing, A. Nebel, R. Wallenstein, �??High-power picosecond LiB3O5 optical parametric oscillators tunable in the blue spectral range,�?? Appl. Phys. B. 72, 137-149 (2001)
[CrossRef]

CLEO

D. Krennrich and R. Wallenstein, �??Powerful red and blue laser radiation generated by frequency doubling and tripling the output of a mode locked 1342nm Nd: YVO4-laser in pp-KTP,�?? CLEO 2002, 167 (2002)

IEEE J. Quantum Electron.

Herwig W.Kogelnik et al, �??Astigmatically compensated cavities for CW dye lasers,�?? IEEE J.Quantum Electron. 8, 373-379, (1972)
[CrossRef]

Paolo Laporta. �??Design criteria for mode size optimization in diode-pumped solid-state lasers,�?? IEEE J. Quantum Electron. 27, 2319-2326 (1991)
[CrossRef]

Y. Inoue, S. Konno, T. Kojima, S. Fujikawa, �??High-power red beam generation by frequency-doubling of a Nd:YAG laser,�?? IEEE J.Quantum Electron. 35, 1737-1740 (1999).
[CrossRef]

Laser Focus World

L. Marshall, �??Many variant lasers compete in the blue,�?? Laser Focus World, October, 79-83 (2004)

Opt Commun.

Sun Z P et al, �??Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO,�?? Opt Commun. 241, 167-172 (2004).
[CrossRef]

Opt. Commun.

C. Czeranowsky,et al, �??Continous wave diode pumped intracavity doubled Nd:GdVO4 laser with 840 mW output power at 456 nm,�?? Opt.Commun. 205, 361-365 (2002)
[CrossRef]

Opt. Lett.

Proc. SPIE

Nebel A and Wallenstein R E, �??Concepts and performance of solid state RGB laser sources for large-frame laser projection displays,�?? in Projection Displays 2000: Sixth in a Series, Ming H. Wu, Eds., Proc. SPIE 3954, 163-166 (2000)

D. Lee and P. F. Moulton, �??A compact OPO-based RGB source,�??in Projection Displays VII, Ming H. Wu, Eds., Proc. SPIE 4294, 60-66 (2001)

D. Lee et al, �??OPO-based compact laser projection display,�?? in Cockpit Displays VII: Displays for Defense Applications, Darrel G. Hopper,Eds., Proc. SPIE 4362, 203-212 (2001)

Other

W. Koechner, Solid-state laser engineering (5th ed, Berlin, Springer, 1999)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

The schematic drawings of the experimental arrangement: M1, plane cavity mirror; M2, M3, 300-mm radius of curvature concave mirrors; AO-Q switch, acousto-optic Q switch; Quartz rotator, quartz 90° polarization rotator; P, Brewster plate; SHG-LBO, LBO for second harmonic generation; THG-LBO, LBO for third harmonic generation.

Fig. 2.
Fig. 2.

The output power of blue light at 440 nm versus pump diode power

Fig. 3.
Fig. 3.

The temporal profile of blue light at 440 nm

Fig. 4.
Fig. 4.

Stability of the blue output power at average output power of 3 W: It is better than 1.0%. At the maximum average output power of 4.3 W, the stability is about 5.6%.

Fig. 5.
Fig. 5.

Far-field intensity distribution of the beam: the M2 value measured by Spiricon beam analyzer is 5±1 in both transverse directions.

Metrics