Abstract

We introduce a novel parallel-aligned liquid-crystal (LC) spatial light modulator (SLM) that has been designed to operate in a phase-only mode for wave-front correction. We measured and analyzed theoretically the electro-optic characteristics of the LC SLM and obtained a peak-to-valley value of 0.07049λ (λ=0.6328 µm) after correction. A Strehl ratio of 0.989 indicates the approximate upper limit of an aberrated wave front that the LC SLM can correct when it is used in an adaptive optical system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. K. Lu and B. E. A. Saleh, �??Theory and design of the liquid crystal TV as an optical spatial phase modulator,�?? Opt. Eng. 29, 240�??246 (1990).
    [CrossRef]
  2. D. Bonaccini, G. Brusa-Zappellini, S. Esposito, P. Salinari, P. Stefanini, and V. Biliotti, �??Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,�?? in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE 1543, 133�??143 (1991).
  3. G. D. Love, �??Liquid-crystal phase modulator for unpolarized light,�?? Appl. Opt. 32, 2222�??2223 (1993).
    [CrossRef] [PubMed]
  4. S. R. Restaino, D. C. Dayton, S. Browne, J. D. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, �??On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,�?? Opt. Express 6, 2�??6 (2000), <a href= "http://www.opticsexpress.org/abstract.cfm?.URI=OPEX-6-1-2">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2</a>
    [CrossRef] [PubMed]
  5. T.-L. Kelly and G. D. Love, �??White-light performance of a polarization-independent liquid-crystal phase modulator,�?? Appl. Opt. 38, 1986�??1989 (1999).
    [CrossRef]
  6. R. Dou and M. K. Giles, �??Closed-loop adaptive-optics system with a liquid-crystal television as a phase retarder,�?? Opt. Lett. 20, 1583�??1585 (1995).
    [CrossRef] [PubMed]
  7. G. D. Love, �??Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,�?? Appl. Opt. 36, 1517�??1524 (1997).
    [CrossRef] [PubMed]
  8. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, �??Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,�?? Appl. Opt. 37, 5579�??5589 (1998).
    [CrossRef]
  9. N. Konforti, E. Marom, and S.-T. Wu, �??Phase-only modulation with twisted nematic liquid-crystal spatial light modulators,�?? Opt. Lett., 13, 251�??253 (1988).
    [CrossRef] [PubMed]
  10. T. H. Barnes, T. Eiju, K. Matusda, and N. Ooyama, �??Phase-only modulation using a twisted nematic liquid crystal television,�?? Appl. Opt. 28, 4845�??4852 (1989).
    [CrossRef] [PubMed]
  11. C. Soutar and K. Lu, �??Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,�?? Opt. Eng. 33, 2704�??2712 (1994).
    [CrossRef]
  12. S.-T. Wu, U. Efron, and L. D. Hess, �??Birefringence measurements of liquid crystals,�?? Appl. Opt. 23, 3911�??3915 (1984).
    [CrossRef]
  13. A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, �??Liquid crystal phase modulator for adaptive optics: temporal performance characterization,�?? Opt. Commun. 141, 247�??253 (1997).
    [CrossRef]
  14. H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, "Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell," J. Appl. Phys. 95, 5502�??5508 (2004).
    [CrossRef]
  15. S.-T. Wu, "Phase retardation dependent optical response time of parallel-aligned liquid crystals," J. Appl. Phys. 60, 1836�??1838 (1986).
    [CrossRef]
  16. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, �??A real-time closed-loop liquid crystal adaptive optics system: first results,�?? Opt. Commun. 137, 17�??21 (1997).
    [CrossRef]
  17. R. Dou and M. K. Giles, �??Phase measurement and compensation of a wave front using a twisted nematic liquid-crystal television,�?? Appl. Opt. 35, 3647�??3652 (1996).
    [CrossRef] [PubMed]
  18. G. T. Bold, T. H. Barnes, J. Gourlay, R. M. Sharples, and T. G. Haskell, �??Practical issues for the use of liquid crystal spatial light modulators in adaptive optics,�?? Opt. Commun. 148, 323�??330 (1998).
    [CrossRef]

Appl. Opt. (7)

J. Appl. Phys. (2)

H. Wang, T. X. Wu, X. Zhu, and S.-T. Wu, "Correlations between liquid crystal director reorientation and optical response time of a homeotropic cell," J. Appl. Phys. 95, 5502�??5508 (2004).
[CrossRef]

S.-T. Wu, "Phase retardation dependent optical response time of parallel-aligned liquid crystals," J. Appl. Phys. 60, 1836�??1838 (1986).
[CrossRef]

Opt. Commun. (3)

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, �??A real-time closed-loop liquid crystal adaptive optics system: first results,�?? Opt. Commun. 137, 17�??21 (1997).
[CrossRef]

G. T. Bold, T. H. Barnes, J. Gourlay, R. M. Sharples, and T. G. Haskell, �??Practical issues for the use of liquid crystal spatial light modulators in adaptive optics,�?? Opt. Commun. 148, 323�??330 (1998).
[CrossRef]

A. V. Kudryashov, J. Gonglewski, S. Browne, and R. Highland, �??Liquid crystal phase modulator for adaptive optics: temporal performance characterization,�?? Opt. Commun. 141, 247�??253 (1997).
[CrossRef]

Opt. Eng. (2)

C. Soutar and K. Lu, �??Determination of the physical properties of an arbitrary twisted-nematic liquid crystal cell,�?? Opt. Eng. 33, 2704�??2712 (1994).
[CrossRef]

K. Lu and B. E. A. Saleh, �??Theory and design of the liquid crystal TV as an optical spatial phase modulator,�?? Opt. Eng. 29, 240�??246 (1990).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

D. Bonaccini, G. Brusa-Zappellini, S. Esposito, P. Salinari, P. Stefanini, and V. Biliotti, �??Adaptive optics wavefront corrector using addressable liquid crystal retarders: II,�?? in Active and Adaptive Optical Components, M. A. Ealey, ed., Proc. SPIE 1543, 133�??143 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Optical setup used to investigate the modulation properties of the LC SLM: 1, He-Ne laser; 2, 3, lenses; 4, beam splitter; 5, partially reflective mirror; 6, LC SLM; 7, partially reflective mirror; 8, CCD; 9, 10, personal computers.

Fig. 2.
Fig. 2.

Phase as a function of applied gray levels of a parallel-aligned LC SLM.

Fig. 3.
Fig. 3.

Transmittance as a function of response times for a parallel-aligned LC cell.

Fig. 4.
Fig. 4.

Two-dimensional plot of the wave front (a) before correction and (b) after correction.

Fig. 5.
Fig. 5.

Comparison of the interferometer wave-front patterns: (a) uncorrected and (b) corrected for an area of 1 cm2.

Fig. 6.
Fig. 6.

Comparison of the wave-front PSFs (a) uncorrected and (b) corrected in the area of 1 cm2.

Tables (1)

Tables Icon

Table 1. Experimental and Theoretical Response Time of a Parallel-Aaligned LC Ccell

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J = exp ( j ϕ ) [ ( α γ ) sin ( γ ) cos ( γ ) + j ( β γ ) sin ( γ ) cos ( γ ) + j ( β γ ) sin ( γ ) ( α γ ) sin ( γ ) ] ,
T = ζ [ cos α cos γ + ( α γ ) sin α sin γ ] 2 + [ β γ sin γ cos ( α + 2 ψ 1 ) ] 2 ,
δ = β arg E x ,
T parallel = 1 , δ = 2 π d λ ( n e ( V ) n o ) .
τ on = η d 2 [ π 2 K 11 ( V 2 V c 2 1 ) ] ,
τ off = η d 2 ( π 2 K 11 ) ,

Metrics