Abstract

We demonstrate a variable optical attenuator (VOA) at λ=1.55 µm using a sheared polymer network liquid crystal (SPNLC). The SPNLC exhibits a fast response time and weak wavelength dependency. Comparing with other polymer-stabilized liquid crystals, the SPNLC has lower driving voltage and negligible light scattering loss when the wavelength exceeds 700 nm. A reflection type VOA with ~0.24 ms response time and -32 dB dynamic range is demonstrated at room temperature and 35 Vrms voltage.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Soref and D. H. McMahon, “Total switching of unpolarized fiber light with a four-port electro-optic liquid-crystal device,” Opt. Lett. 5, 147–149 (1980).
    [CrossRef] [PubMed]
  2. E. G. Hanson, “Polarization-independent liquid-crystal optical attenuator for fiberoptics applications,” Appl. Opt. 21, 1342–1344 (1982).
    [CrossRef] [PubMed]
  3. K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
    [CrossRef]
  4. J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.
  5. C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).
  6. S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).
  7. S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
    [CrossRef]
  8. R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
    [CrossRef]
  9. Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer-stabilized twisted nematic liquid crystal,” Opt. Express 12, 1221–1227 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1221
    [CrossRef] [PubMed]
  10. F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
    [CrossRef]
  11. F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
    [CrossRef] [PubMed]
  12. J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).
  13. Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
    [CrossRef]
  14. O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
    [CrossRef]
  15. I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)
  16. P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
    [CrossRef]
  17. V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays” Science 283, 1903–1905 (1999).
    [CrossRef] [PubMed]

2004 (3)

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer-stabilized twisted nematic liquid crystal,” Opt. Express 12, 1221–1227 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1221
[CrossRef] [PubMed]

2003 (3)

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

2002 (1)

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

2001 (2)

P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
[CrossRef]

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

1999 (1)

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays” Science 283, 1903–1905 (1999).
[CrossRef] [PubMed]

1993 (1)

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

1990 (1)

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

1982 (1)

1980 (1)

Amano, C.

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Amimori, I.

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

Aphonin, O. A.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

Crawford, G. P.

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

Dabrowski, R.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

Du, F.

Eakin, J. N.

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

Fan, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Feng, W.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

Gautier, C.

P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
[CrossRef]

Gauza, S.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

Glushchenko, A.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).

Hanson, E. G.

Hikmet, R. A. M.

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

Hirabayashi, K.

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Huang, T.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

Jiang, J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

Kumar, S.

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays” Science 283, 1903–1905 (1999).
[CrossRef] [PubMed]

Lin, Y. H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer-stabilized twisted nematic liquid crystal,” Opt. Express 12, 1221–1227 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1221
[CrossRef] [PubMed]

Lu, Y. Q.

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer-stabilized twisted nematic liquid crystal,” Opt. Express 12, 1221–1227 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1221
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

Mao, C.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

McMahon, D. H.

Pan, J. J.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

Panina, Y. V.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

Pelcovits, R. A.

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

Pravdin, A. B.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

Priezjev, N. V.

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

Qiu, X.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

Ren, H.

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

Ren, H. W.

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

Seed, A. J.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

Sixou, P.

P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
[CrossRef]

Soref, R. A.

Villanova, H.

P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
[CrossRef]

Vorflusev, V.

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays” Science 283, 1903–1905 (1999).
[CrossRef] [PubMed]

Wada, M.

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

Wang, H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

Wang, W.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

Wen, C. H.

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

West, J. L.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).

Wu, H.

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

Wu, J.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

Wu, K.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

Wu, S. T.

Y. Q. Lu, F. Du, Y. H. Lin, and S. T. Wu, “Variable optical attenuator based on polymer-stabilized twisted nematic liquid crystal,” Opt. Express 12, 1221–1227 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-7-1221
[CrossRef] [PubMed]

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

F. Du, S. Gauza, and S. T. Wu, “Influence of curing temperature and high birefringence on the properties of polymer-stabilized liquid crystals,” Opt. Express 11, 2891–2896 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2891
[CrossRef] [PubMed]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Xu, M.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

Yakovlev, D. A.

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

Yang, D. K.

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Zhang, G.

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. H. Fan, Y. H. Lin, H. Ren, S. Gauza, and S. T. Wu, “Fast-response and scattering-free polymer network liquid crystals for infrared light modulators,” Appl. Phys. Lett. 84, 1233–1235 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Hirabayashi, M. Wada, and C. Amano, “Optical-fiber variable-attenuator arrays using polymer-network liquid crystal,” IEEE Photon. Technol. Lett. 13, 487–489 (2001).
[CrossRef]

J. Appl. Phys. (1)

R. A. M. Hikmet, “Electrically induced light scattering from anisotropic gels,” J. Appl. Phys. 68, 4406–4412 (1990).
[CrossRef]

Jpn. J. Appl. Phys. (2)

F. Du, Y. Q. Lu, H. W. Ren, S. Gauza, and S. T. Wu, “Polymer-stabilized cholesteric liquid crystal for polarization-independent variable optical attenuator,” Jpn. J. Appl. Phys. 43, 7083–7086 (2004).
[CrossRef]

S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dąbrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1  42, 3463–3466 (2003).
[CrossRef]

Liq. Cryst. (1)

O. A. Aphonin, Y. V. Panina, A. B. Pravdin, and D. A. Yakovlev, “Optical-properties of stretched polymer-dispersed liquid-crystal films,” Liq. Cryst. 15, 395–407 (1993).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

P. Sixou, C. Gautier, and H. Villanova, “Nematic and cholesteric PDLC elaborated under shear stress,” Mol. Cryst. Liq. Cryst. 364, 679–690 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Science (1)

V. Vorflusev and S. Kumar, “Phase-separated composite films for liquid crystal displays” Science 283, 1903–1905 (1999).
[CrossRef] [PubMed]

Soc. Information Display, Tech. Digest (2)

I. Amimori, J. N. Eakin, G. P. Crawford, N. V. Priezjev, and R. A. Pelcovits, “Optical and mechanical properties of stretched PDLC films for scattering polarizers,” Soc. Information Display, Tech. Digest 33, 834–837 (2002)

J. L. West, G. Zhang, and A. Glushchenko, “Stressed liquid crystals for electrically controlled fast shift of phase retardation,” Soc. Information Display, Tech. Digest 34, 1469–1471 (2003).

Other (3)

J. J. Pan, H. Wu, W. Wang, X. Qiu, and J. Jiang, “Temperature independent, accurate LC VOA through electric feedback control,” in Proceedings of National Fiber Optics Engineers Conference (Telcordia, Orlando, Florida, 2003), 943–949.

C. Mao, M. Xu, W. Feng, T. Huang, K. Wu, and J. Wu, “Liquid-crystal applications in optical telecommunication,” in Liquid Crystal Materials, Devices, and Applications IX, L. C. Chien, ed., Proc. SPIE5003, 121–129 (2003).

S. T. Wu and D. K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Shearing processes and LC domain orientations of the SPNLC film. (a) Before and (b) after shearing.

Fig. 2.
Fig. 2.

The schematic diagram of a SPNLC-based VOA.

Fig. 3.
Fig. 3.

The detailed operation mechanisms of the phase modulator module: (a) VOA ON state, V=0, and (b) VOA OFF state, V=35 Vrms. HW: half-wave plate, QW: quarter-wave plate, and SPNLC: sheared polymer network liquid crystal.

Fig. 4.
Fig. 4.

The VOA attenuation at different drive voltages. λ=1.55 µm.

Fig. 5.
Fig. 5.

Optical response time of the 9-µm SPNLC VOA: (a) decay time, and (b) rise time.

Fig. 6.
Fig. 6.

Wavelength-dependent transmittance of the E7 SPNLC cell. d~9 µm.

Fig. 7.
Fig. 7.

The wavelength-dependent attenuations of the VOA at different attenuation range.

Metrics