Abstract

Limited depth of focus is among the main problems of todays see-through head-mounted displays. In this paper we propose and evaluate a new solution to this problem: the use of the coherent multiple imaging technique in a retinal projection display by incorporating an appropriate phase-only mask. The evaluation is based on a schematic eye model and on the partial coherence simulation tool SPLAT which allows us to calculate the projected retinal images of a text target. Objective image quality criteria demonstrate that this approach is promising provided that partially coherent illumination light is used. In this case, psychometric measurements reveal that the depth of focus for reading text can be extended by a factor of up to 3.2. For fully coherent and incoherent illumination, however, the retinal images suffer from structural and contrast degradation effects, respectively.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
    [Crossref]
  2. G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
    [Crossref]
  3. J. Kollin and M. Tidwell, “Optical Engineering Challenges of the Virtual Retinal Display,” in Novel Optical Systems Design and Optimization, J.M. Sasian, ed., Proc. SPIE2537, 48–60 (1995).
  4. R. Johnston and S. Willey, “Development of a Commercial Retinal Scanning Display,” in Proc. of Helmet- and Head-Mounted Displays and Symbology Design, 2–13 (W. Stephens and L.A. Haworth (Eds.), 1995).
  5. G. de Wit, “A Retinal Scanning Display for Virtual Reality,” Ph.D. thesis, TU Delft (1997).
  6. T. Tomono, “Spectacle-type Wearable Display,” Opt. Commun. 180, 205–210 (2000).
    [Crossref]
  7. M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
    [Crossref]
  8. M. von Waldkirch, P. Lukowicz, and G. Tröster, “Spectacle-based display design for accommodation-free viewing,” in Proc. of 2nd International Conference on Pervasive Computing (Pervasive 2004), LNCS vol. 3001, 106–123 (Springer-Verlag, 2004).
  9. G. Westheimer, “The maxwellian view,” Vision Res. 6, 669–682 (1966).
    [Crossref] [PubMed]
  10. M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
    [Crossref]
  11. J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
    [Crossref]
  12. L. Marran and C. Schor, “Multiaccomodative Stimuli in VR systems: Problems & Solutions,” Human Factors 39(3), 382–388 (1997).
    [Crossref]
  13. T. Sugihara and T. Miyasato, “A Lightweight 3-D HMD with Accommodative Compensation,” in Proc. 29th Soc. Information Display (SID98), vol. XXIX, 927–930 (San Jose, CA, 1998).
  14. M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
    [Crossref]
  15. S. Inoué and K.R. Spring, “Microscope image formation - Principles of Köhler illumination” in Video Microscopy: the Fundamentals (Plenum Press, New York, 1997).
    [Crossref]
  16. H. Hopkins, “On the diffraction theory of Optical Images,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 217(1130), 408–432 (1953).
  17. H. Hopkins, “The concept of partial coherence in optics,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 208(1093), 263–277 (1951).
  18. A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik (Voss, Hamburg, 1909).
  19. A. Popiolek-Masajada and H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Physiol. Opt. 22, 201–208 (2002).
    [Crossref]
  20. R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
    [Crossref]
  21. I. Escudero-Sanz and R. Navarro, “Off-Axis Aberrations of a Wide-Angle Schematic Eye Model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
    [Crossref]
  22. OSLO is a registered trademark of Lambda Research Corp.
  23. K. Toh and A. Neureuther, “Identifying and Monitoring Effects of Lens Aberrations in Projection Printing,” in Optical Microlithography VI, H.L. Stover, ed., Proc. SPIE772, 202–209 (1987).
  24. R.J. Becherer and G.B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt Soc. 57(12), 1479–1486 (1967).
    [Crossref]
  25. Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
    [Crossref]
  26. H. Lieberman and A. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behaviour Research Methods & Instrumentation 14(1), 21–25 (1982).
    [Crossref]
  27. C. Kaernbach, “Adaptive threshold estimation with unforced-choice tasks,” Perception & Psychophysics 63(8), 1377–1388 (2001).
    [Crossref]
  28. M. Bass, ed., Handbook of Optics, vol. 1 (McGraw-Hill, Inc., New York, 1995).
  29. J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, Inc., New York, 1996).

2004 (2)

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
[Crossref]

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

2003 (1)

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
[Crossref]

2002 (1)

A. Popiolek-Masajada and H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Physiol. Opt. 22, 201–208 (2002).
[Crossref]

2001 (2)

C. Kaernbach, “Adaptive threshold estimation with unforced-choice tasks,” Perception & Psychophysics 63(8), 1377–1388 (2001).
[Crossref]

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

2000 (2)

J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

T. Tomono, “Spectacle-type Wearable Display,” Opt. Commun. 180, 205–210 (2000).
[Crossref]

1999 (2)

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-Axis Aberrations of a Wide-Angle Schematic Eye Model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[Crossref]

1997 (1)

L. Marran and C. Schor, “Multiaccomodative Stimuli in VR systems: Problems & Solutions,” Human Factors 39(3), 382–388 (1997).
[Crossref]

1994 (1)

G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
[Crossref]

1985 (1)

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref]

1982 (1)

H. Lieberman and A. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behaviour Research Methods & Instrumentation 14(1), 21–25 (1982).
[Crossref]

1967 (1)

R.J. Becherer and G.B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt Soc. 57(12), 1479–1486 (1967).
[Crossref]

1966 (1)

G. Westheimer, “The maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Azuma, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Baillot, Y.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Becherer, R.J.

R.J. Becherer and G.B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt Soc. 57(12), 1479–1486 (1967).
[Crossref]

Behringer, R.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Bescós, J.

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref]

Bor, Z.

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Bovik, A.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

Craig, I.

G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
[Crossref]

de Wit, G.

G. de Wit, “A Retinal Scanning Display for Virtual Reality,” Ph.D. thesis, TU Delft (1997).

Edgar, G.

G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
[Crossref]

Erdélyi, M.

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Escudero-Sanz, I.

I. Escudero-Sanz and R. Navarro, “Off-Axis Aberrations of a Wide-Angle Schematic Eye Model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[Crossref]

Feiner, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Goodman, J.W.

J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, Inc., New York, 1996).

Goon, A.

J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

Gullstrand, A.

A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik (Voss, Hamburg, 1909).

Hopkins, H.

H. Hopkins, “On the diffraction theory of Optical Images,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 217(1130), 408–432 (1953).

H. Hopkins, “The concept of partial coherence in optics,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 208(1093), 263–277 (1951).

Inoué, S.

S. Inoué and K.R. Spring, “Microscope image formation - Principles of Köhler illumination” in Video Microscopy: the Fundamentals (Plenum Press, New York, 1997).
[Crossref]

Johnston, R.

R. Johnston and S. Willey, “Development of a Commercial Retinal Scanning Display,” in Proc. of Helmet- and Head-Mounted Displays and Symbology Design, 2–13 (W. Stephens and L.A. Haworth (Eds.), 1995).

Julier, S.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Kaernbach, C.

C. Kaernbach, “Adaptive threshold estimation with unforced-choice tasks,” Perception & Psychophysics 63(8), 1377–1388 (2001).
[Crossref]

Kasprzak, H.

A. Popiolek-Masajada and H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Physiol. Opt. 22, 201–208 (2002).
[Crossref]

Kollin, J.

J. Kollin and M. Tidwell, “Optical Engineering Challenges of the Virtual Retinal Display,” in Novel Optical Systems Design and Optimization, J.M. Sasian, ed., Proc. SPIE2537, 48–60 (1995).

Krueger, M.

J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

Lieberman, H.

H. Lieberman and A. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behaviour Research Methods & Instrumentation 14(1), 21–25 (1982).
[Crossref]

Lukowicz, P.

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Spectacle-based display design for accommodation-free viewing,” in Proc. of 2nd International Conference on Pervasive Computing (Pervasive 2004), LNCS vol. 3001, 106–123 (Springer-Verlag, 2004).

MacIntyre, B.

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

Marran, L.

L. Marran and C. Schor, “Multiaccomodative Stimuli in VR systems: Problems & Solutions,” Human Factors 39(3), 382–388 (1997).
[Crossref]

Miyasato, T.

T. Sugihara and T. Miyasato, “A Lightweight 3-D HMD with Accommodative Compensation,” in Proc. 29th Soc. Information Display (SID98), vol. XXIX, 927–930 (San Jose, CA, 1998).

Navarro, R.

I. Escudero-Sanz and R. Navarro, “Off-Axis Aberrations of a Wide-Angle Schematic Eye Model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[Crossref]

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref]

Neureuther, A.

K. Toh and A. Neureuther, “Identifying and Monitoring Effects of Lens Aberrations in Projection Printing,” in Optical Microlithography VI, H.L. Stover, ed., Proc. SPIE772, 202–209 (1987).

Parrent, G.B.

R.J. Becherer and G.B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt Soc. 57(12), 1479–1486 (1967).
[Crossref]

Pentland, A.

H. Lieberman and A. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behaviour Research Methods & Instrumentation 14(1), 21–25 (1982).
[Crossref]

Pope, J.

G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
[Crossref]

Popiolek-Masajada, A.

A. Popiolek-Masajada and H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Physiol. Opt. 22, 201–208 (2002).
[Crossref]

Rolland, J.

J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

Santamaría, J.

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref]

Schor, C.

L. Marran and C. Schor, “Multiaccomodative Stimuli in VR systems: Problems & Solutions,” Human Factors 39(3), 382–388 (1997).
[Crossref]

Sheikh, H.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

Simoncelli, E.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

Smayling, M.

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Spring, K.R.

S. Inoué and K.R. Spring, “Microscope image formation - Principles of Köhler illumination” in Video Microscopy: the Fundamentals (Plenum Press, New York, 1997).
[Crossref]

Sugihara, T.

T. Sugihara and T. Miyasato, “A Lightweight 3-D HMD with Accommodative Compensation,” in Proc. 29th Soc. Information Display (SID98), vol. XXIX, 927–930 (San Jose, CA, 1998).

Tidwell, M.

J. Kollin and M. Tidwell, “Optical Engineering Challenges of the Virtual Retinal Display,” in Novel Optical Systems Design and Optimization, J.M. Sasian, ed., Proc. SPIE2537, 48–60 (1995).

Tittel, F.

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Toh, K.

K. Toh and A. Neureuther, “Identifying and Monitoring Effects of Lens Aberrations in Projection Printing,” in Optical Microlithography VI, H.L. Stover, ed., Proc. SPIE772, 202–209 (1987).

Tomono, T.

T. Tomono, “Spectacle-type Wearable Display,” Opt. Commun. 180, 205–210 (2000).
[Crossref]

Tröster, G.

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Spectacle-based display design for accommodation-free viewing,” in Proc. of 2nd International Conference on Pervasive Computing (Pervasive 2004), LNCS vol. 3001, 106–123 (Springer-Verlag, 2004).

von Waldkirch, M.

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
[Crossref]

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Spectacle-based display design for accommodation-free viewing,” in Proc. of 2nd International Conference on Pervasive Computing (Pervasive 2004), LNCS vol. 3001, 106–123 (Springer-Verlag, 2004).

Wang, Z.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

Westheimer, G.

G. Westheimer, “The maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Willey, S.

R. Johnston and S. Willey, “Development of a Commercial Retinal Scanning Display,” in Proc. of Helmet- and Head-Mounted Displays and Symbology Design, 2–13 (W. Stephens and L.A. Haworth (Eds.), 1995).

Wilson, W.

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Appl. Opt. (1)

J. Rolland, M. Krueger, and A. Goon, “Multifocal planes head-mounted displays,” Appl. Opt. 39(19), 3209–3215 (2000).
[Crossref]

Behaviour Research Methods & Instrumentation (1)

H. Lieberman and A. Pentland, “Microcomputer-based estimation of psychophysical thresholds: the best PEST,” Behaviour Research Methods & Instrumentation 14(1), 21–25 (1982).
[Crossref]

Displays (1)

G. Edgar, J. Pope, and I. Craig, “Visual accommodation problems with head-up and helmet-mounted displays?,” Displays 15(2), 68–75 (1994).
[Crossref]

Human Factors (1)

L. Marran and C. Schor, “Multiaccomodative Stimuli in VR systems: Problems & Solutions,” Human Factors 39(3), 382–388 (1997).
[Crossref]

IEEE Computer Graphics and Applications (1)

R. Azuma, Y. Baillot, R. Behringer, S. Feiner, S. Julier, and B. MacIntyre, “Recent Advances in Augmented Reality,” IEEE Computer Graphics and Applications 21(6), 34–47 (2001) and references therein.
[Crossref]

IEEE Trans. on image processing (1)

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Trans. on image processing 13(4), 600–612 (2004).
[Crossref]

J. Opt Soc. (1)

R.J. Becherer and G.B. Parrent, “Nonlinearity in optical imaging systems,” J. Opt Soc. 57(12), 1479–1486 (1967).
[Crossref]

J. Opt. Soc. Am. A (3)

R. Navarro, J. Santamaría, and J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2(8), 1273–1281 (1985).
[Crossref]

I. Escudero-Sanz and R. Navarro, “Off-Axis Aberrations of a Wide-Angle Schematic Eye Model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[Crossref]

M. Erdélyi, Z. Bor, W. Wilson, M. Smayling, and F. Tittel, “Simulation of coherent multiple imaging by means of pupil-plane filtering in optical microlithography,” J. Opt. Soc. Am. A 16(8), 1909–1914 (1999).
[Crossref]

Ophthal. Physiol. Opt. (1)

A. Popiolek-Masajada and H. Kasprzak, “Model of the optical system of the human eye during accommodation,” Ophthal. Physiol. Opt. 22, 201–208 (2002).
[Crossref]

Opt. Commun. (1)

T. Tomono, “Spectacle-type Wearable Display,” Opt. Commun. 180, 205–210 (2000).
[Crossref]

Opt. Eng. (1)

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Effect of light coherence on depth of focus in head-mounted retinal projection displays,” Opt. Eng. 43(7), 1552–1560 (2004).
[Crossref]

Opt. Express (1)

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Defocusing simulations on a retinal scanning display for quasi accommodation-free viewing,” Opt. Express 11(24), 3220–3233 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-24-3220
[Crossref]

Perception & Psychophysics (1)

C. Kaernbach, “Adaptive threshold estimation with unforced-choice tasks,” Perception & Psychophysics 63(8), 1377–1388 (2001).
[Crossref]

Vision Res. (1)

G. Westheimer, “The maxwellian view,” Vision Res. 6, 669–682 (1966).
[Crossref] [PubMed]

Other (13)

M. von Waldkirch, P. Lukowicz, and G. Tröster, “Spectacle-based display design for accommodation-free viewing,” in Proc. of 2nd International Conference on Pervasive Computing (Pervasive 2004), LNCS vol. 3001, 106–123 (Springer-Verlag, 2004).

J. Kollin and M. Tidwell, “Optical Engineering Challenges of the Virtual Retinal Display,” in Novel Optical Systems Design and Optimization, J.M. Sasian, ed., Proc. SPIE2537, 48–60 (1995).

R. Johnston and S. Willey, “Development of a Commercial Retinal Scanning Display,” in Proc. of Helmet- and Head-Mounted Displays and Symbology Design, 2–13 (W. Stephens and L.A. Haworth (Eds.), 1995).

G. de Wit, “A Retinal Scanning Display for Virtual Reality,” Ph.D. thesis, TU Delft (1997).

T. Sugihara and T. Miyasato, “A Lightweight 3-D HMD with Accommodative Compensation,” in Proc. 29th Soc. Information Display (SID98), vol. XXIX, 927–930 (San Jose, CA, 1998).

S. Inoué and K.R. Spring, “Microscope image formation - Principles of Köhler illumination” in Video Microscopy: the Fundamentals (Plenum Press, New York, 1997).
[Crossref]

H. Hopkins, “On the diffraction theory of Optical Images,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 217(1130), 408–432 (1953).

H. Hopkins, “The concept of partial coherence in optics,” Proc. of the Royal Society of London. Series A, Mathematical and Physical Sciences 208(1093), 263–277 (1951).

A. Gullstrand, Appendix II in Handbuch der Physiologischen Optik (Voss, Hamburg, 1909).

M. Bass, ed., Handbook of Optics, vol. 1 (McGraw-Hill, Inc., New York, 1995).

J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, Inc., New York, 1996).

OSLO is a registered trademark of Lambda Research Corp.

K. Toh and A. Neureuther, “Identifying and Monitoring Effects of Lens Aberrations in Projection Printing,” in Optical Microlithography VI, H.L. Stover, ed., Proc. SPIE772, 202–209 (1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Principal setup of the retinal projection display. P1 signifies the L 1-focal plane with the aperture stop and the pupil phase mask (PM) for the multiple imaging. L 1 to L 3 represent lenses and P 2 the eye pupil plane. The straight lines show the axial illumination rays while the dotted lines indicate the LCD-imaging.

Fig. 2.
Fig. 2.

The accommodation-dependent schematic eye model as used for all simulations.

Fig. 3.
Fig. 3.

Schematic illustration of eye motion in case of fully coherent illumination. The dots within the exit pupil depict the Fourier transform pattern of the LCD image.

Fig. 4.
Fig. 4.

Image quality functions C and S in terms of eye accommodation ΔD for various values of ε and with (Δδ,δ̄)=(0.5D,3.5D). The data were calculated with σ=0.5 and a font size viewing angle αv =0.4deg.

Fig. 5.
Fig. 5.

Image quality functions C and S in terms of ΔD for various values of Δδ with (ε,δ̄)=(11D,3.5D). Again, σ=0.5 and αv =0.4deg.

Fig. 6.
Fig. 6.

Image quality functions C and S for σ=0 in terms of ΔD for various values of ε and with (Δδ,δ̄)=(0.5D,3.5D). Again, αv =0.4deg. The grey unfilled symbols show the former results for ε=11D with partially coherent illumination for comparison.

Fig. 7.
Fig. 7.

Image quality functions C and S for σ=∞ in terms of ΔD for various values of ε and with (Δδ,δ̄)=(0.5D,3.5D). Again, αv =0.4deg. The grey unfilled symbols show the former results for ε=11D with partially coherent illumination for comparison.

Fig. 8.
Fig. 8.

Phase profile ψdisp of the rotationally symmetric phase-only mask PM.

Fig. 9.
Fig. 9.

First row: retinal images for ε=0D and σ=0.5 for comparison. The other three rows show the retinal images for the three coherence levels when the designed phase-mask PM (see Fig. 8) is applied. The labels below the images indicate (σ/ΔD). Again, αv =0.4deg.

Fig. 10.
Fig. 10.

Image quality functions C and S in terms of coherence level σ and eye accommodation ΔD. The phase-mask PM used is described by (εδ,δ̄)=(11D,0.5D,3.5D). Again, αv =0.4deg.

Fig. 11.
Fig. 11.

Contrast and structural image quality averaged over the considered range of accommodation [0D,6D] in terms of σ.

Fig. 12.
Fig. 12.

(a) shows the psychometric functions of one subject for the first experiment for all three αv -values and σ=0.4. The ordinate shows the subject’s performance as proportion of answers ‘better or equal quality’. The measured performances are indicated by circles (▦) while the squares (▪) signify the derived thresholds. The threshold error bars indicate the 95%-confidence interval. The inset shows the reference image for αv =0.4deg. (b) shows the results of the first experiment based on 7 subjects (see text).

Fig. 13.
Fig. 13.

Results of the second experiment (estimation of the DOF) based on 7 subjects.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f ( x , y ) = P ( x , y ) · e i ψ ( x , y ) = P ( x , y ) · e i ( ψ disp ( x , y ) + ψ eye ( x , y ) )
ψ disp ( ρ ) = π λ δ ρ 2
ψ disp ( ρ ) = angle [ l = 0 L w l e i ϕ l e i ( π λ δ l ρ 2 ) ]
C = 2 s x s y s x 2 + s y 2 and S = s xy s x s y
ψ disp ( ρ ) = angle [ l = 0 L e i π l ( 1 L + Δδ λ ρ 2 ) ] + π λ δ 0 ρ 2
I ( u , v ) m , n , p , q C m , n , p , q a m , q a p , q * e 2 π i NA NA [ ( m p ) u + ( n q ) v ]
C m , n , p , q γ ( x , y ) f ( x + β m , y + β n ) f * ( x + β p , y + β q ) dxdy

Metrics