Abstract

Polarized images generated by the scattering near-field scanning optical microscopic interferometer were numerically studied by modeling the interferometer as a coupled point-dipole system. It was shown that, for a given specimen, the resolution of the near-field intensity and phase images were strongly dependent on both the polarization-direction of the reference light and the position of the far-field detector, revealing the strong polarization dependence of the near-field images. In the case of evanescent illumination, highly accurate images could be realized only when the detector was placed at a large enough view angle with the specimen and the reference light was polarized in the detecting-plane, which is vertical to the sample plane and contains both the detection point and the probe-tip.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. A. Cline and M. Isaason, ???Probe-sample interaction in reflection near-field scanning optical microscopy,??? Appl. Opt. 34, 4869-4876 (1995).
    [CrossRef] [PubMed]
  2. F. Zenhausern, M. P. O???Boyle, and H. K. Wickramsinghe, ???Apertureless near-field optical microscopy,??? Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  3. P. L. Phillips, J. C. Knight, and J. M. Pottage, ???Direct measurement of optical phase in the near field,??? Appl. Phys. Lett. 76, 541-543 (2000).
    [CrossRef]
  4. Antonello Nesci, René Dändliker, and Hans Peter Herzig, ???Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope,??? Opt. Lett. 26, 208-210 (2001).
    [CrossRef]
  5. H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ???Enhanced sensitivity near-field scanning optical microscopy as high resolution,??? Appl. Phys. Lett. 73, 1469-1471 (1998).
    [CrossRef]
  6. R. Hillenbrand and F. Keilmann, ???Complex optical constants on subwavelength scale,??? Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  7. R. Hillenbrand and F. Keilmann, ???Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,??? Appl. Phys. B 73, 239-243 (2001).
    [CrossRef]
  8. B. Knoll and F. Keilmann, ???Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,??? Opt. Commun. 182, 321-328 (2000).
    [CrossRef]
  9. M. Xiao, ???Theoretical treatment for scattering near-field optical microscopy,??? J. Opt. Soc. Am. A 14, 2977-2984 (2001).
    [CrossRef]
  10. M. Xiao, ???On near-field scanning optical microscopy: Homogeneous and evanescent radiation,??? J. Modern Opt. 44, 327-344 (1997).
    [CrossRef]
  11. M. Xiao, S. Bozhevolnyi, and O. Keller, ???Numerical study of configurational resonances in near-field optical microscopy with a mesoscopic metallic probe,??? Appl. Phys. A 62, 115-121 (1996).
    [CrossRef]
  12. Tero Setälä, Matti Kaivola, and Ari T. Friberg, ???Evanescent and propagating electromagnetic fields in scattering form point-dipole structures,??? J. Opt. Soc. Am. A 18, 678-688 (2001).
    [CrossRef]
  13. R. Carminati, ???Phase properties of the optical near field,??? Phys. Rev. E 55, 4091-4094 (1997).
    [CrossRef]

Appl. Opt. (1)

Appl. Phys. A (1)

M. Xiao, S. Bozhevolnyi, and O. Keller, ???Numerical study of configurational resonances in near-field optical microscopy with a mesoscopic metallic probe,??? Appl. Phys. A 62, 115-121 (1996).
[CrossRef]

Appl. Phys. B (1)

R. Hillenbrand and F. Keilmann, ???Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy,??? Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

Appl. Phys. Lett. (3)

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, ???Enhanced sensitivity near-field scanning optical microscopy as high resolution,??? Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

F. Zenhausern, M. P. O???Boyle, and H. K. Wickramsinghe, ???Apertureless near-field optical microscopy,??? Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

P. L. Phillips, J. C. Knight, and J. M. Pottage, ???Direct measurement of optical phase in the near field,??? Appl. Phys. Lett. 76, 541-543 (2000).
[CrossRef]

J. Modern Opt. (1)

M. Xiao, ???On near-field scanning optical microscopy: Homogeneous and evanescent radiation,??? J. Modern Opt. 44, 327-344 (1997).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

B. Knoll and F. Keilmann, ???Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy,??? Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. E (1)

R. Carminati, ???Phase properties of the optical near field,??? Phys. Rev. E 55, 4091-4094 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

R. Hillenbrand and F. Keilmann, ???Complex optical constants on subwavelength scale,??? Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Setup of the s-SNOM interferometer (a) and the simulation model (b)

Fig. 2.
Fig. 2.

(a) distribution of the surface-spheres. (b) The topography of the spheres. (c) geometric relation between the probe and the surface spheres

Fig. 3.
Fig. 3.

Polarized images obtained by a detector with angles of (85°, 90°, 5°)

Fig. 4.
Fig. 4.

Polarized images obtained by a detector at view angle of (65°, 90°, 35°)

Fig. 5.
Fig. 5.

Polarized images obtianed by a detector at view angle of (35°, 90°, 65°)

Fig. 6.
Fig. 6.

Ploarized images obtianed by a detector at view angle of (5°, 90°, 85°)

Fig. 7.
Fig. 7.

Images obtianed by a detector at view angle of (45°, 45°, 85°)

Fig. 8.
Fig. 8.

Three-dimensional display of Fig. 6(b) and Fig. 6(f)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( r j , ω ) = E 0 ( r j , ω ) i μ 0 ω i = 1 N [ G ( r j , r i , ω ) · α i ( ω ) ] · E ( r i , ω ) ,
α sur ( ω ) = i α ( ω ) [ [ 1 α ( ω ) r p ( ω ) 4 π ε 0 ( 2 δ ) 3 ] 1 0 0 0 [ 1 α ( ω ) r p ( ω ) 4 π ε 0 ( 2 δ ) 3 ] 1 0 0 0 [ 1 α ( ω ) r p ( ω ) 2 π ε 0 ( 2 δ ) 3 ] 1 ]
ξ = ξ 0 + · ξ ,
ξ = ( U ) 1 · ξ 0 ,
( E x ( r , ω ) E y ( r , ω ) E z ( r , ω ) ) = u 0 ω 2 j = 1 N α j ( ω ) · G ( r , r j , ω ) · ( E x ( r j , ω ) E y ( r j , ω ) E z ( r j , ω ) )

Metrics