Abstract

We demonstrate an improved method for characterizing ultrashort pulses. Our apparatus is based on spectral phase interferometry for direct electric-field reconstruction (SPIDER) and particularly suited for measurement of compressed white-light continuum pulses with their strong spectral amplitude variations. Phase-sensitive noise rejection allows for a significant increase of the dynamic range of the SPIDER trace. We show that characteristic SPIDER artifacts can be avoided and demonstrate the method by characterizing 4.3-fs pulses from a two-stage hollow-fiber compressor.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct electric-field reconstruction

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley
Opt. Lett. 24(18) 1314-1316 (1999)

Phase retrieval via regularization in self-diffraction-based spectral interferometry

Simon Birkholz, Günter Steinmeyer, Sebastian Koke, Daniel Gerth, Steven Bürger, and Bernd Hofmann
J. Opt. Soc. Am. B 32(5) 983-992 (2015)

Interferometric frequency-resolved optical gating

Gero Stibenz and Günter Steinmeyer
Opt. Express 13(7) 2617-2626 (2005)

References

  • View by:
  • |
  • |
  • |

  1. N. Zhavoronkov and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation,” Phys. Rev. Lett. 88, 203901 (2002).
    [Crossref] [PubMed]
  2. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
    [Crossref]
  3. K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
    [Crossref] [PubMed]
  4. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
    [Crossref] [PubMed]
  5. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
    [Crossref]
  6. C. Iaconis and I. A. Walmsley, “Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses,” IEEE J. Quantum Electronics 35, 501–509 (1999).
    [Crossref]
  7. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
    [Crossref]
  8. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
    [Crossref]
  9. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Kluwer Academic Publishers, Boston, 2000.
  10. D. Keusters, H.-S. Tan, P. O’Shea, E. Zeek, R. Trebino, and W. S. Warren, “Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components,” J. Opt. Soc. Am. B 20, 2226 (2003).
    [Crossref]
  11. R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
    [Crossref]
  12. M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
    [Crossref]
  13. G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
    [Crossref]
  14. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
    [Crossref]
  15. M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
    [Crossref]
  16. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
    [Crossref] [PubMed]
  17. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156 (1982).
    [Crossref]
  18. G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” submitted to Appl. Phys. Lett., October 2004.

2004 (2)

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
[Crossref] [PubMed]

2003 (3)

2002 (4)

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
[Crossref]

N. Zhavoronkov and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[Crossref] [PubMed]

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

2001 (1)

2000 (2)

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

1999 (2)

1998 (1)

1982 (1)

Angelow, G.

Baltuška, A.

Baum, P.

Biegert, J.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

Cerullo, G.

De Silvestri, S.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

Fuji, T.

Gallmann, L.

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

Gosteva, A.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

Hirasawa, M.

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Iaconis, C.

Ina, H.

Karasawa, N.

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Keller, U.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

Keusters, D.

Kobayashi, S.

Kobayashi, T.

Korn, G.

N. Zhavoronkov and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[Crossref] [PubMed]

Kusaka, S.

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Li, L. M.

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Lochbrunner, S.

Matuschek, N.

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

Morita, R.

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Nakagawa, N.

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Nisoli, M.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

O’Shea, P.

Oka, K.

Richter, W.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” submitted to Appl. Phys. Lett., October 2004.

Riedle, E.

Ristau, D.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

Sansone, G.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

Schenkel, B.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

Scheuer, V.

Stagira, S.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

Starke, K.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

Steinmeyer, G.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” submitted to Appl. Phys. Lett., October 2004.

Stibenz, G.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” submitted to Appl. Phys. Lett., October 2004.

Suguro, A.

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Sutter, D. H.

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

Svelto, O.

Takeda, M.

Tan, H.-S.

Trebino, R.

Tschudi, T.

Vozzi, C.

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

Walmsley, I. A.

Warren, W. S.

Yamane, K.

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Yamashita, M.

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Zavelani-Rossi, M.

Zeek, E.

Zhang, Z.

Zhavoronkov, N.

N. Zhavoronkov and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[Crossref] [PubMed]

Appl. Phys. B (4)

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, “Techniques for the characterization of sub-10-fs optical pulses: a comparison,” Appl. Phys. B 70, S67–S75 (2000).
[Crossref]

M. Nisoli, G. Sansone, S. Stagira, C. Vozzi, S. De Silvestri, and O. Svelto, “Ultra-broadband continuum generation by hollow-fiber cascading,” Appl. Phys. B 75, 601–604 (2002).
[Crossref]

G. Sansone, G. Steinmeyer, C. Vozzi, S. Stagira, M. Nisoli, S. De Silvestri, K. Starke, D. Ristau, B. Schenkel, J. Biegert, A. Gosteva, and U. Keller, “Mirror dispersion control of a hollow fiber supercontinuum,” Appl. Phys. B 78, 551–555 (2004).
[Crossref]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71, 509 (2000).
[Crossref]

IEEE J. Quantum Electronics (1)

C. Iaconis and I. A. Walmsley, “Self-Referencing Spectral Interferometry for Measuring Ultrashort Optical Pulses,” IEEE J. Quantum Electronics 35, 501–509 (1999).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

R. Morita, M. Hirasawa, N. Karasawa, S. Kusaka, N. Nakagawa, K. Yamane, L. M. Li, A. Suguro, and M. Yamashita, “Sub-5 fs optical pulse characterization,” Meas. Sci. Technol. 13, 1710–1720 (2002).
[Crossref]

Opt. Lett. (7)

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28, 1987–1989 (2003).
[Crossref] [PubMed]

K. Yamane, Z. Zhang, K. Oka, R. Morita, M. Yamashita, and A. Suguro, “Optical pulse compression to 3.4fs in the monocycle region by feedback phase compensation,” Opt. Lett. 28, 2258–2260 (2003).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29, 210–212 (2004).
[Crossref] [PubMed]

M. Zavelani-Rossi, G. Cerullo, S. De Silvestri, L. Gallmann, N. Matuschek, G. Steinmeyer, U. Keller, G. Angelow, V. Scheuer, and T. Tschudi, “Pulse compression over a 170-THz bandwidth in the visible by use of only chirped mirrors,” Opt. Lett. 26, 1155–1157 (2001).
[Crossref]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27, 306–308 (2002).
[Crossref]

C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792–794 (1998).
[Crossref]

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, “Characterization of sub-6-fs optical pulses with spectral phase interferometry for direct-field reconstruction,” Opt. Lett. 24, 1314–1316 (1999).
[Crossref]

Phys. Rev. Lett. (1)

N. Zhavoronkov and G. Korn, “Generation of Single Intense Short Optical Pulses by Ultrafast Molecular Phase Modulation,” Phys. Rev. Lett. 88, 203901 (2002).
[Crossref] [PubMed]

Other (2)

R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, Kluwer Academic Publishers, Boston, 2000.

G. Stibenz, G. Steinmeyer, and W. Richter, “Dynamic spectral interferometry for measuring the nonlinear amplitude and phase response of a saturable absorber mirror,” submitted to Appl. Phys. Lett., October 2004.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Experimental setup of the high-dynamic range SPIDER. The spectra recorded by the line-scan CCD camera are processed twice by SPIDER phase retrieval, first to separate signal from noise in a lock-in fashion and then a second time for retrieval of the spectral phase from the interferogram.
Fig. 2.
Fig. 2. Measurement of the SH spectral interferogram of two identical pulses. The red trace I ave(λ) consists of a simple average over 10,000 spectra according to Eq. (3). Note that the fringe contrast vanishes at about 800 THz. The blue trace I signal(λ) has been processed in a lock-in like fashion, see Eq. (2), significantly increasing the fringe contrast over the entire bandwidth.
Fig. 3.
Fig. 3. Phase retrieval from Fig. 2. Colors correspond to the designations in Fig. 2. (a) Spectral phases reconstructed from the interferograms. The phase from the replica delay φ delay(ν)=-2πνΔt has been subtracted for clarity. (b) Reconstruction of the spectral phase of the pulse by spectrally integrating the differences between SPIDER phase and reference phase.
Fig. 4.
Fig. 4. Differential phase SPIDER measurement. (a) Retrieved phases with different amounts of additional GDD in the beam. The black line shows a reference measurement without additional glass. (b) The spectral phase differences caused by a differential GDD of 10 fs2. The calculated phase difference is shown as a magenta line; a fit to the measured data is shown by the green line. The curvature between computation and the fit agrees within 0.5 fs2.
Fig. 5.
Fig. 5. Demonstration of the measurement of an ultrashort pulse via the double phase retrieval procedure. (a) Measured SPIDER trace. The SPIDER trace is shifted by -331 THz to match the spectral range of the fundamental spectrum. (b) Spectral phase and intensity calibrated spectrum used for the reconstruction of the temporal profile of the pulse (c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

φ chop ( t ) = arg [ ω = π f chop 2 π f 0 exp ( i ω t ) t = 0 N δ t exp ( i ω t ) λ 1 λ 2 I ( λ , t ) d λ d t d ω ] ,
I signal ( λ ) = t = 0 N δ t I ( λ , t ) cos φ chop ( t ) d t .
I ave ( λ ) = t = 0 N δ t I ( λ , t ) d t .

Metrics