Abstract

We present a method that is capable of imaging particle size and concentration in heterogeneous turbid media using multispectral diffuse optical tomography (MSDOT). Successful images of mean particle size and particle concentration are achieved for the first time using tissue phantom data obtained from a ten-wavelength MSDOT system.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J.R. Mourant, A.H. Hielscher, A.A. Eick, T.M. Johnson, and J.P. Freyer, ???Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells,??? Cancer Cytopathol 84, 366-374 (1998).
  2. B. Veauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, ???Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,??? Cell Biophys. 23, 91-109 (1993).
  3. L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, ???Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,??? Phys. Rev. Lett. 80, 627-630 (1998).
    [CrossRef]
  4. A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A.J. Berger, D. Hsiang, J. Butler, R.F. Holcombe, B.J. Tromberg, ???Spectroscopy enhances the information content of optical mammography,??? J. Biomed. Opt. 7, 60-71 (2002).
    [CrossRef] [PubMed]
  5. R.S. Cotran, S. Robbins, V. Kumar, Robbins Pathological Basis of Disease (W.B. Saunders, Philadelphia, Pennsylvania, 1994).
  6. B.W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T.D. Tosteson, S.P.Poplack, K.D. Paulsen, ???Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,??? J. Biomed. Opt. 9, 541-552 (2004).
    [CrossRef] [PubMed]
  7. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E.M.C. Hillman, S.R. Arridge, A.G. Yodh, ???Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomography,??? Opt. Lett. 28, 2339-2341 (2003)
    [CrossRef] [PubMed]
  8. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, ???Reduced light-scattering properties fro mixtures of spherical-particles-a simple approximation derived from MIE calculations,??? Appl. Opt. 31, 1370-1376 (1992).
    [CrossRef] [PubMed]
  9. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, ???Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,??? Appl. Opt. 36, 949-957 (1997).
    [CrossRef] [PubMed]
  10. A.M.K. Nilsson, C. Sturesson, D.L. Liu, S. Andersson-Engels, ???Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,??? Appl. Opt. 37, 1256-1267 (1998).
    [CrossRef]
  11. M. Johns, H. Liu, ???Limited possibility for quantifying mean particle size by logarithmic light-scattering spectroscopy,??? Appl. Opt. 42, 2968-2971 (2003).
    [CrossRef] [PubMed]
  12. Y. Xu, X. Gu, T. Khan, H. Jiang, ???Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,??? Appl. Opt. 41, 5427-5437 (2002).
    [CrossRef] [PubMed]
  13. K.D. Paulsen, H. Jiang, ???Spatially varying optical property reconstruction using a finite element diffusion equation approximation,??? Med. Phys. 22, 691-701 (1995).
    [CrossRef] [PubMed]
  14. N. Iftimia, H. Jiang, ???Quantitative optical image reconstruction of turbid media by use of direct-current measurements,??? Appl. Opt. 39, 5256-5261 (2000).
    [CrossRef]
  15. H. Jiang, J. Pierce, J. Kao, and Eva Sevick-Muraca, ???Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,??? Appl. Opt. 36, 3310-3318 (1997).
    [CrossRef] [PubMed]
  16. H. Jiang, ???Enhanced photon-migration methods for particle sizing in concentrated suspensions,??? AIChE J. 44, 1740-1744 (1998).
    [CrossRef]
  17. H. Jiang, G. Marquez, L. Wang, ???Particle sizing in concentrated suspensions by use of steady-state, continuous-wave photon-migration techniques,??? Opt. Lett. 23, 394-396 (1998).
    [CrossRef]
  18. M. Bartlett, H. Jiang, ???Particle sizing in dense, rapidly flowing KCl suspensions by photon migration techniques,??? AIChE J. 47, 60-65 (2001).
    [CrossRef]
  19. G. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)
  20. C. Li, H. Jiang, ???A calibration method in diffuse optical tomography,??? J. Opt. A: Pure Appl. Opt. 6, 844-852 (2004).
    [CrossRef]
  21. C. Li, H. Zhao, H. Jiang, in Biomedical Topical Meeting on CD-ROM (the Optical Society of America, Washington, DC, 2004), WF19.
  22. E. Shives, Y. Xu, H. Jiang, ???Fluorescence lifetime tomography of turbid media based on an oxygen-sensitive dye,??? Opt. Express 10, 1557-1562 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1557.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-26-1557.</a>
    [CrossRef] [PubMed]
  23. X. Li, Z. Chen, J. Gong, A. Taflove, V. Backman, ???Analytical techniques for addressing forward and inverse problems of light scattering by irregularly shaped particles,??? Opt. Lett. 29, 1239-11241(2004).
    [CrossRef] [PubMed]

AIChE J.

H. Jiang, ???Enhanced photon-migration methods for particle sizing in concentrated suspensions,??? AIChE J. 44, 1740-1744 (1998).
[CrossRef]

M. Bartlett, H. Jiang, ???Particle sizing in dense, rapidly flowing KCl suspensions by photon migration techniques,??? AIChE J. 47, 60-65 (2001).
[CrossRef]

Appl. Opt.

N. Iftimia, H. Jiang, ???Quantitative optical image reconstruction of turbid media by use of direct-current measurements,??? Appl. Opt. 39, 5256-5261 (2000).
[CrossRef]

H. Jiang, J. Pierce, J. Kao, and Eva Sevick-Muraca, ???Measurement of particle-size distribution and volume fraction in concentrated suspensions with photon migration techniques,??? Appl. Opt. 36, 3310-3318 (1997).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, ???Reduced light-scattering properties fro mixtures of spherical-particles-a simple approximation derived from MIE calculations,??? Appl. Opt. 31, 1370-1376 (1992).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, ???Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,??? Appl. Opt. 36, 949-957 (1997).
[CrossRef] [PubMed]

A.M.K. Nilsson, C. Sturesson, D.L. Liu, S. Andersson-Engels, ???Changes in spectral shape of tissue optical properties in conjunction with laser-induced thermotherapy,??? Appl. Opt. 37, 1256-1267 (1998).
[CrossRef]

M. Johns, H. Liu, ???Limited possibility for quantifying mean particle size by logarithmic light-scattering spectroscopy,??? Appl. Opt. 42, 2968-2971 (2003).
[CrossRef] [PubMed]

Y. Xu, X. Gu, T. Khan, H. Jiang, ???Absorption and scattering images of heterogeneous scattering media can be simultaneously reconstructed by use of dc data,??? Appl. Opt. 41, 5427-5437 (2002).
[CrossRef] [PubMed]

Cancer Cytopathol

J.R. Mourant, A.H. Hielscher, A.A. Eick, T.M. Johnson, and J.P. Freyer, ???Evidence of intrinsic differences in the light scattering properties of tumorigenic and nontumorigenic cells,??? Cancer Cytopathol 84, 366-374 (1998).

Cell Biophys.

B. Veauvoit, H. Liu, K. Kang, P. D. Kaplan, M. Miwa, and B. Chance, ???Characterization of absorption and scattering properties of various yeast strains by time-resolved spectroscopy,??? Cell Biophys. 23, 91-109 (1993).

J. Biomed. Opt.

A.E. Cerussi, D. Jakubowski, N. Shah, F. Bevilacqua, R. Lanning, A.J. Berger, D. Hsiang, J. Butler, R.F. Holcombe, B.J. Tromberg, ???Spectroscopy enhances the information content of optical mammography,??? J. Biomed. Opt. 7, 60-71 (2002).
[CrossRef] [PubMed]

B.W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T.D. Tosteson, S.P.Poplack, K.D. Paulsen, ???Characterization of hemoglobin, water, and NIR scattering in breast tissue: Analysis of intersubject variability and menstrual cycle changes,??? J. Biomed. Opt. 9, 541-552 (2004).
[CrossRef] [PubMed]

J. Opt. A: Pure Appl. Opt.

C. Li, H. Jiang, ???A calibration method in diffuse optical tomography,??? J. Opt. A: Pure Appl. Opt. 6, 844-852 (2004).
[CrossRef]

Med. Phys.

K.D. Paulsen, H. Jiang, ???Spatially varying optical property reconstruction using a finite element diffusion equation approximation,??? Med. Phys. 22, 691-701 (1995).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, ???Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,??? Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

Other

R.S. Cotran, S. Robbins, V. Kumar, Robbins Pathological Basis of Disease (W.B. Saunders, Philadelphia, Pennsylvania, 1994).

G. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

C. Li, H. Zhao, H. Jiang, in Biomedical Topical Meeting on CD-ROM (the Optical Society of America, Washington, DC, 2004), WF19.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) The µ′s spectra generated by Eq. (1) and the Mie fittings using recovered particle parameters from simulated data (5% noise) with 10, 20, and 50 wavelengths, respectively. (b) Experimental µ′s spectra DOT reconstructed at a typical node in the target area and the corresponding Mie fitting using recovered particle parameters for the 2.06 µm polystyrene case.

Fig. 2.
Fig. 2.

The DOT reconstructed absorption images (a1 to a10) and reduced scattering images (b1 to b10) at 10 different wavelengths: a1/b1 at 638nm; a2/b2 at 673nm; a3/b3 at 690nm; a4/b4 at 733nm; a5/b5 at 775nm; a6/b6 at 808nm; a7/b7 at 840nm; a8/b8 at 915nm; a9/b9 at 922nm and a10/b10 at 965nm for the 2.06 µ m polystyrene case for all ten wavelengths.

Fig. 3.
Fig. 3.

Reconstructed images of mean particle size (a, c) and concentration (b, d) for the 2.06 µ m (a, b) and 5.66 µ m (c, d) polystyrene cases, respectively. The axes (left and bottom) indicate the spatial scale, in millimeters, whereas the colorful scale (right) records the mean particle size or concentration, in micrometers or percentage.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

μ s ( λ ) = 0 3 Q scat ( x , n , λ ) [ 1 g ( x, n , λ ) ] 2 x ϕ f ( x ) dx
χ 2 = j = λ 1 λ 10 [ ( μ s ) j o ( μ s ) j c ] 2
f ( x ) = 1 2 π b 2 e ( x a ) 2 2 b 2
μ s ( λ ) = 0 3 Q scat ( x , n , λ ) [ 1 g ( x , n , λ ) ] 2 x ϕ 1 2 π b 2 e ( x a ) 2 b 2 2 dx

Metrics