Abstract

In this paper, we introduce the principle and demonstrate the feasibility of a tunable multiple-cavity solid-spaced bandpass filter for WDM (Wavelength Division Multiplexing) applications, which uses a vernier effect since the two cavities have different thermal sensitivities. A set of specific wavelengths can be addressed in the whole C-Band by using temperature changes less than 100°C. This result corresponds to a gain factor in sensitivity about 5 with respect to alternative standard thin-film configurations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Floriot, F. Lemarchand and M. Lequime, ???Double coherent solid-spaced filters for very narrowbandpass filtering applications,??? Opt. Commun. 222, 101-106 (2003).
    [CrossRef]
  2. J. Floriot, F. Lemarchand and M. Lequime, ???Cascaded solid-spaced filters for DWDM applications,??? in Advances in Optical Thin-Films, C. Amra, N. Kaiser and H.A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).
  3. J. Floriot, F. Lemarchand and M. Lequime, ???Solid-spaced filters: an alternative for narrow bandpass applications,??? in Proceedings of Optical Interference Coatings, Tucson (2004).
  4. J.A. Dobrowolski, ???Mica interference filters with transmission bands of very narrow half-widths,??? J. Opt. Soc. Am. 49, 794-806 (1959).
    [CrossRef]
  5. R.R. Austin, ???The use of solid etalon devices as narrowband interference filters,??? Opt. Eng. 11, 68-69 (1972).
  6. M. Candille and J.M. Saurel, ???Réalisation de filtres double onde à bandes passantes très étroites sur supports en matière plastique (mylar),??? Opt. Acta 21, 947-962 (1974).
    [CrossRef]
  7. S.D. Smith and C.R. Pidgeon, ???Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,??? mém. Soc. R. Sci. Liège 5è série 9, 336-349 (1963).
  8. A.E. Roche and A.M. Title, ???Tilt tunable ultra narrow-band filters for high resolution photometry,??? Appl. Opt. 14, 765-770 (1974).
    [CrossRef]
  9. L. Domash, E. Ma, N. Nemchuk, A. Payne and M. Wu, ???Tunable thin-film filters based on thermo-optic semiconductor films,??? in Applications of Photonic Technology V, R. A. Lessard, G. A. Lampropoulos and G. W. Schinn, eds., Proc. SPIE 4833, 685-695 (2002).
  10. L. Domash, M. Wu, N. Nemchuck and E. Ma, ???Tunable and Switchable Multiple-Cavity Thin Film Filters,??? J. Lightwave Technol. 22, 126-135 (2004).
    [CrossRef]
  11. L. Domash, M. Wu, N. Nemchuk and R. Murano, ???Switchable thin film add/drop filter,??? presented at the Optical Fiber Conf., Optical Soc. America, Atlanta, GA (2003).
  12. W. Gunning, ???Double-cavity electrooptic Fabry-Perot tunable filter,??? Appl. Opt. 17, 3129-3131 (1982).
    [CrossRef]
  13. M. Lequime, R. Parmentier, F. Lemarchand and C. Amra, ???Towards tunable thin film filters for WDM applications,??? Appl. Opt. 41, 3277-3284 (2002).
    [CrossRef] [PubMed]
  14. M. Bass, E. van Stryland, D. Williams and W. Wolfe, Handbook of Optics (McGraw-Hill Professional, 2nd edition, 1994).
  15. J. Haisma, B. Spierings, U. Bierman and A. Van Gorkum, ???Diversity and feasibility of direct bonding: a survey of a dedicated optical technology,??? Appl. Opt. 33, 1154-1169 (1994).
    [CrossRef] [PubMed]
  16. A. Plössl and G. Kraüter, ???Wafer direct bonding: tailoring adhesion between brittle materials,??? Mat. Sci. and Eng. R25, 1-88 (1999).
  17. J. Floriot, F. Lemarchand and M. Lequime are preparing a manuscript to be called ???High accuracy measurement of the residual air gap thickness of thin-film and solid-spaced filters assembled by optical contacting.???

Advances in Optical Thin-Films SPIE (1)

J. Floriot, F. Lemarchand and M. Lequime, ???Cascaded solid-spaced filters for DWDM applications,??? in Advances in Optical Thin-Films, C. Amra, N. Kaiser and H.A. Macleod, eds., Proc. SPIE 5250, 384-392 (2003).

Appl. Opt. (4)

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (1)

Mat. Sci. and Eng. (1)

A. Plössl and G. Kraüter, ???Wafer direct bonding: tailoring adhesion between brittle materials,??? Mat. Sci. and Eng. R25, 1-88 (1999).

mém. Soc. R. Sci. Liège 5è série (1)

S.D. Smith and C.R. Pidgeon, ???Application of multiple beam interferometric methods to the study of CO2 emission at 15 µm,??? mém. Soc. R. Sci. Liège 5è série 9, 336-349 (1963).

Opt. Acta (1)

M. Candille and J.M. Saurel, ???Réalisation de filtres double onde à bandes passantes très étroites sur supports en matière plastique (mylar),??? Opt. Acta 21, 947-962 (1974).
[CrossRef]

Opt. Commun. (1)

J. Floriot, F. Lemarchand and M. Lequime, ???Double coherent solid-spaced filters for very narrowbandpass filtering applications,??? Opt. Commun. 222, 101-106 (2003).
[CrossRef]

Opt. Eng. (1)

R.R. Austin, ???The use of solid etalon devices as narrowband interference filters,??? Opt. Eng. 11, 68-69 (1972).

Optical Fiber Conf (1)

L. Domash, M. Wu, N. Nemchuk and R. Murano, ???Switchable thin film add/drop filter,??? presented at the Optical Fiber Conf., Optical Soc. America, Atlanta, GA (2003).

Proc of Optical Interference Coating (1)

J. Floriot, F. Lemarchand and M. Lequime, ???Solid-spaced filters: an alternative for narrow bandpass applications,??? in Proceedings of Optical Interference Coatings, Tucson (2004).

Proc. SPIE (1)

L. Domash, E. Ma, N. Nemchuk, A. Payne and M. Wu, ???Tunable thin-film filters based on thermo-optic semiconductor films,??? in Applications of Photonic Technology V, R. A. Lessard, G. A. Lampropoulos and G. W. Schinn, eds., Proc. SPIE 4833, 685-695 (2002).

Other (2)

M. Bass, E. van Stryland, D. Williams and W. Wolfe, Handbook of Optics (McGraw-Hill Professional, 2nd edition, 1994).

J. Floriot, F. Lemarchand and M. Lequime are preparing a manuscript to be called ???High accuracy measurement of the residual air gap thickness of thin-film and solid-spaced filters assembled by optical contacting.???

Supplementary Material (2)

» Media 1: GIF (1679 KB)     
» Media 2: GIF (583 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(1.63 MB) Movie of the thermal dependence of both filter transmission (black: silica; red: silicon).

Fig. 2.
Fig. 2.

Theoretical transmission of the double-cavity filter.

Fig. 3.
Fig. 3.

Theoretical transmission of the double-cavity filter between 1520 and 1570nm.

Fig. 4.
Fig. 4.

Experimental transmission of both filters at 25°C (black: silica filter; red: silicon filter).

Fig. 5.
Fig. 5.

Experimental transmission of the double-cavity filter.

Fig. 6.
Fig. 6.

(582 KB) Movie of the successive experimental coincidences for the double-cavity filter.

Fig. 7.
Fig. 7.

Eight-channel tunability (black: initial coincidence; red: final coincidence).

Fig. 8.
Fig. 8.

Sixteen-channel tunability (black: initial coincidence; red: final coincidence).

Tables (2)

Tables Icon

Table 1. Theoretical coincidences and related sensitivities

Tables Icon

Table 2: Experimental coincidences and related sensitivities

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ 0 = κ Δ ( nd ) nd where κ = 1 1 λ 0 2 k π · φ λ
λ 0 = 2 n 1 ( λ 0 ) d 1 k 0 = 2 n 2 ( λ 0 ) d 2 m 0
λ k = 2 n 1 ( λ k ) d 1 k 0 + k and λ m = 2 n 2 ( λ m ) d 2 m 0 + m
λ k T = λ k [ 1 + β 1 Δ T ] and λ m T = λ m [ 1 + β 2 Δ T ]
Δ T = 1 β 1 [ { n 1 ( λ 0 ) λ p n 1 ( λ k ) λ 0 1 } + k λ p 2 n 1 ( λ k ) d 1 ]
n 1 ( λ k ) = n 1 ( λ 0 ) + ( λ k λ 0 ) n 1 λ
Δ T = 1 β 1 [ k k 0 λ 0 { λ p + λ 0 2 n 1 ( λ 0 ) n 1 λ } + λ p λ 0 1 ]

Metrics