Abstract

The dynamics of the pre-corneal tear film topography are studied on 21 subjects with a purpose-built lateral shearing interferometer. It was found that in most of the recorded data the tear surface is continuous and smooth. Eye movement is identified as a major problem in quantitative tear topography estimation. Based on the reconstructed tear topography maps, the effects of tear dynamics in visual performance, wavefront sensing for refractive surgery and ophthalmic adaptive optics are discussed in terms of wavefront RMS. The potential of lateral shearing interferometry for clinical applications such as dry eye diagnosis and contact lens performance studies is illustrated by the recorded topography features such as post-blink undulation, break-up, eyelid-produced bumps/ridges, bubbles and rough tear surfaces in front of contact lenses.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.S. Smirnov, “Measurement of wave aberration in the human eye,” Biophys. 6, 52–66 (1961).
  2. I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
    [Crossref]
  3. J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
    [Crossref]
  4. T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
    [Crossref]
  5. W.N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8(2), 153–164 (1988).
    [Crossref]
  6. L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
    [Crossref]
  7. H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
    [Crossref]
  8. E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
    [Crossref]
  9. R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).
  10. Ignacio Iglesias and Pablo Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25(24), 1804–1806 (2000).
    [Crossref]
  11. F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
    [Crossref]
  12. Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
    [Crossref]
  13. Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
    [Crossref]
  14. Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
    [Crossref]
  15. Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
    [Crossref]
  16. M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
    [Crossref]
  17. T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
    [Crossref]
  18. Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Lateral shearing interferometer for the evaluation of tear topography dynamics,” To be published in App. Opt. (2004).
  19. M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
    [Crossref]
  20. Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
    [Crossref]
  21. Austin Roorda, Associate professor, university of houston, college of optometry, houston tx 77204-2020, US. Personal communication,” (2002).
  22. R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
    [Crossref]

2004 (4)

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
[Crossref]

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

2003 (2)

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

2002 (1)

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

2001 (1)

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

2000 (3)

E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
[Crossref]

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

Ignacio Iglesias and Pablo Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25(24), 1804–1806 (2000).
[Crossref]

1998 (4)

F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
[Crossref]

T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref]

T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
[Crossref]

1997 (1)

J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref]

1993 (1)

L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
[Crossref]

1988 (1)

W.N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8(2), 153–164 (1988).
[Crossref]

1982 (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

1961 (1)

H.S. Smirnov, “Measurement of wave aberration in the human eye,” Biophys. 6, 52–66 (1961).

Alió, J.L.

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

Aragón, J.L.

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

Artal, P.

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
[Crossref]

F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

Artal, Pablo

Ignacio Iglesias and Pablo Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25(24), 1804–1806 (2000).
[Crossref]

Begley, C

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

Begley, Carlolyn G.

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Berrio, E.

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
[Crossref]

Bradley, A

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

Bradley, A.

T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref]

Bradley, Arthur

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Charman, W.N.

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

W.N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8(2), 153–164 (1988).
[Crossref]

Cheng, Xu

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

Christopher Dainty, J.

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
[Crossref]

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Lateral shearing interferometer for the evaluation of tear topography dynamics,” To be published in App. Opt. (2004).

Dainty, Chris

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Diaz-Santana, Luis

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Dubra, Alfredo

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
[Crossref]

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Lateral shearing interferometer for the evaluation of tear topography dynamics,” To be published in App. Opt. (2004).

Fujikado, Takashi

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Gasson, Paul

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Gendron, E.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Gilmartin, B.

L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
[Crossref]

Glanc, M.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Gray, L.S.

L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
[Crossref]

Heron, G.

W.N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8(2), 153–164 (1988).
[Crossref]

Himebaugh, Nikole L.

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Hirohara, Yoko

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Hofer, H.

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

Hori, Yuichi

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Iglesias, I.

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
[Crossref]

Iglesias, Ignacio

Ignacio Iglesias and Pablo Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25(24), 1804–1806 (2000).
[Crossref]

Ina, H.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

Kasprzak, H.T.

T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
[Crossref]

Kobayashi, S.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

Koh, Shizuka

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Kollbaum, Pete S.

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

Kowalik, W.

T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
[Crossref]

Kuroda, Teruhito

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Lacombe, F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Lafaille, D.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Le Gargasson, J.-F.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Léna, P.

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Liang, J.

J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref]

Licznerski, T.J.

T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
[Crossref]

Maeda, Naoyuki

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Mihashi, Toshifumi

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Montés-Micó, R.

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

Moreno-Barriuso, E.

E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
[Crossref]

Munoz, G.

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

Munro, Ian

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Navarro, R.

E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
[Crossref]

Paterson, Carl

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
[Crossref]

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Lateral shearing interferometer for the evaluation of tear topography dynamics,” To be published in App. Opt. (2004).

Prieto, P.M.

F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

Roorda, Austin

Austin Roorda, Associate professor, university of houston, college of optometry, houston tx 77204-2020, US. Personal communication,” (2002).

Salmon, T.O.

T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref]

Singer, B.

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

Smirnov, H.S.

H.S. Smirnov, “Measurement of wave aberration in the human eye,” Biophys. 6, 52–66 (1961).

Takeda, M.

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

Tano, Yasuo

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Thibos, L.N.

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref]

Thibos, Larry

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Thibos, Larry N.

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

Torti, Cristiano

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Tutt, R.

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

Vargas-Martin, F.

F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

Watanabe, Hitoshi

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

Williams, D.R.

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref]

Winn, B.

L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
[Crossref]

Wright, Annette R.

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Am. J. Ophthalmol. (1)

Shizuka Koh, Naoyuki Maeda, Teruhito Kuroda, Yuichi Hori, Hitoshi Watanabe, Takashi Fujikado, Yasuo Tano, Yoko Hirohara, and Toshifumi Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134(1), 115–117 (2002).
[Crossref]

App. Opt. (1)

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Wave-front reconstruction from shear phase maps by use of the discrete Fourier transform,” App. Opt. 43(5), 1108–1113 (2004).
[Crossref]

Biophys. (1)

H.S. Smirnov, “Measurement of wave aberration in the human eye,” Biophys. 6, 52–66 (1961).

Invest. Ophth. Vis. Sci. (3)

R. Tutt, A Bradley, C Begley, and L.N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophth. Vis. Sci. 41(13), 4117–4123 (2000).

Xu Cheng, Nikole L. Himebaugh, Pete S. Kollbaum, Larry N. Thibos, and Arthur Bradley, “Test-retest reliability of clinical shack-hartmann measurements,” Invest. Ophth. Vis. Sci. 45(1), 351–360 (2004).
[Crossref]

R. Montés-Micó, J.L. Alió, G. Munoz, and W.N. Charman, “Temporal changes in optical quality of airtear film interface at anterior cornea after blink,” Invest. Ophth. Vis. Sci. 45, 1752–1757 (2004).
[Crossref]

J. Opt. Soc. Am. (1)

M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982).
[Crossref]

J. Opt. Soc. Am. A (6)

F. Vargas-Martin, P.M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to its performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
[Crossref]

H. Hofer, P. Artal, B. Singer, J.L. Aragón, and D.R. Williams, “Dynamics of the eye’s aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001).
[Crossref]

E. Moreno-Barriuso and R. Navarro, “Laser ray tracing versus Hartmann-Shack sensor for measuring optical aberrations in the human eye,” J. Opt. Soc. Am. A 17(6), 974–985 (2000).
[Crossref]

I. Iglesias, E. Berrio, and P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15(9), 2466–2476 (1998).
[Crossref]

J. Liang and D.R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997).
[Crossref]

T.O. Salmon, L.N. Thibos, and A. Bradley, “Comparison of the eye’s wave-front aberration measured psyco-physically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[Crossref]

Ophthal. Physiol. Opt. (2)

W.N. Charman and G. Heron, “Fluctuations in accommodation: a review,” Ophthal. Physiol. Opt. 8(2), 153–164 (1988).
[Crossref]

L.S. Gray, B. Winn, and B. Gilmartin, “Effect of target luminance on microfluctuations of accommodation,” Ophthal. Physiol. Opt. 13(3), 258–265 (1993).
[Crossref]

Opt. Commun. (1)

M. Glanc, E. Gendron, F. Lacombe, D. Lafaille, J.-F. Le Gargasson, and P. Léna, “Towards wide-field retinal imaging with adaptive optics,” Opt. Commun. 230, 225–238 (2004).
[Crossref]

Opt. Express (1)

Luis Diaz-Santana, Cristiano Torti, Ian Munro, Paul Gasson, and Chris Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2597
[Crossref]

Opt. Lett. (1)

Ignacio Iglesias and Pablo Artal, “High-resolution retinal images obtained by deconvolution from wave-front sensing,” Opt. Lett. 25(24), 1804–1806 (2000).
[Crossref]

Optom. Vis. Sci. (1)

Nikole L. Himebaugh, Annette R. Wright, Arthur Bradley, Carlolyn G. Begley, and Larry Thibos, “Use of retroillumination to visualize optical aberrations caused by tear film break-up,” Optom. Vis. Sci. 80(1), 69–78 (2003).
[Crossref]

Proc. SPIE (1)

T.J. Licznerski, H.T. Kasprzak, and W. Kowalik, “Two interference techniques for in vivo assesment of the tear film stability on a cornea and contact lens,” Proc. SPIE 3320, 183–186 (1998).
[Crossref]

Other (2)

Alfredo Dubra, Carl Paterson, and J. Christopher Dainty, “Lateral shearing interferometer for the evaluation of tear topography dynamics,” To be published in App. Opt. (2004).

Austin Roorda, Associate professor, university of houston, college of optometry, houston tx 77204-2020, US. Personal communication,” (2002).

Supplementary Material (9)

» Media 1: MPG (3642 KB)     
» Media 2: MPG (4207 KB)     
» Media 3: MPG (2820 KB)     
» Media 4: MPG (2818 KB)     
» Media 5: MPG (2985 KB)     
» Media 6: MPG (2818 KB)     
» Media 7: MPG (2818 KB)     
» Media 8: MPG (2803 KB)     
» Media 9: MPG (2906 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sketch of the 3 dimensional lateral shearing interferometer. After the light is reflected back from the front surface of the tear, the first glass wedge produces two horizontally sheared and tilted copies of the incident beam by reflection and a third copy by transmission. The second wedge allows the first pair of copies of the beam to go through unchanged, while on reflection produces a second pair of copies of the beam carrying information from the eye, sheared and tilted in the perpendicular direction. The superscript in the lenses indicates focal length in millimeters.

Fig. 2.
Fig. 2.

Movies illustrating tear topography features: (a) smooth surface (2.8MB); (b) post-blink undulation (2.8MB); (c) bubbles and post-blink undulation (2.8MB); (d) eyelid-produced bumps (2.8MB); (e) break-up in an otherwise smooth surface (2.8MB); (f) and (g) dramatic break-up (2.8MB); (h) and (i) rough surfaces in front of hard and soft contact lenses respectively (2.8MB). These movies play at 5 frames per second, that is the rate at which the interferograms were recorded.

Fig. 3.
Fig. 3.

Eye movement: the plot on the left shows a typical eye movement pattern over 30s (the radius of the red circle corresponds to one standard deviation); the center and right plots are the normalized histograms of the horizontal and vertical eye displacement for all the 2450 usable frames from 14 different subjects. Both distributions have zero mean and 0.16 and 0.12mmstandard deviations respectively, which is equivalent to 9nm of wavefront error RMS.

Fig. 4.
Fig. 4.

Correlation between the relative change in the radius of the interferograms and the estimated change in defocus (0.67).

Fig. 5.
Fig. 5.

Movies of estimated wavefront aberration introduced by the tear topography: (a) corresponds to Fig. 2(a) and shows a very smooth tear surface(4MB);(b) corresponds to Fig. 2(d) and shows the formation and flattening of a bump on the top of the pupil (4MB). The change in wavefront height between consecutive contour lines is λ/14.

Fig. 6.
Fig. 6.

Typical wavefront RMS evolution due to the tear topography dynamics. The red horizontal line in the plots indicates the diffraction limit for the wavelength used in the experiment. Plot (a) shows the evolution of the RMS (after subtraction of the mean wavefront of the series). Plot (b) is similar to (a) but with the defocus and astigmatism terms removed, and (c) plots the evolution of the defocus and astigmatism components.

Fig. 7.
Fig. 7.

Mean RMS and residual RMS over the data series corresponding to time intervals of 30s. The red horizontal line shows the diffraction limit (λ=632.8nm). The data is separated in three groups: on the left (light gray background) are the series in which there were no blinks during the data recording; in the center are series in which there was at least one blink and on the right (dark gray) we show the series in which the subject was wearing contact lenses at the time of the experiment. The numbers on top of the error bars are the the maximum correlation coefficient between the corresponding RMS and the eye and head movement.

Fig. 8.
Fig. 8.

Temporal evolution of the estimated wavefront error RMS (a) and residual wavefront error RMS (b) for 30 data series (around 2300 topography maps) corresponding to 19 different subjects. The black lines are the mean RMS at the corresponding time and the gray areas delimited by the blue lines are the areas within one standard deviation from the mean. Again, the red horizontal line indicates the diffraction limit at 632.8nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

RMS ( θ ) ( 2.4 μ m ) × θ .

Metrics