Abstract

Low-loss shallow-rib waveguides were fabricated using As2Se3 chalcogenide glass and polyamide-imide polymer. Waveguides were patterned directly in the As2Se3 layer by photodarkening followed by selective wet etching. Theory predicted a modal effective area of 3.5–4 µm2, and this was supported by near-field modal measurements. The Fabry-Perot technique was used to estimate propagation losses as low as ~0.25 dB/cm. First-order Bragg gratings near 1550 nm were holographically patterned in some waveguides. The Bragg gratings exhibited an index modulation on the order of 0.004. They were used as a means to assess the modal effective indices of the waveguides. Small core As2Se3 waveguides with embedded Bragg gratings have potential for realization of all-optical Kerr effect devices.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. R. Rangel-Rojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, ???Near-infrared optical nonlinearities in amorphous chalcogenides,??? Opt. Commun. 109, 145-150 (1994).
    [CrossRef]
  2. G. Lenz and S. Spalter, ???Chalcogenide glasses,??? in Nonlinear Photonic Crystals, R. E. Slusher and B.J. Eggleton eds. (Springer-Verlag, New York, 2003).
  3. J. M. Harbold, F. O. Ilday, F. W. Wise, J. S. Sanghera, V. Q. Nguyen, L. B. Shaw, and I. D. Aggarwal, ???Highly nonlinear As-S-Se glasses for all-optical switching,??? Opt. Lett. 27, 119-121 (2002).
    [CrossRef]
  4. T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, ???Non-linear optical properties of chalcogenide glasses in the system As-S-Se,??? J. Non-Crystalline Sol. 256&257, 353-360 (1999).
    [CrossRef]
  5. R. E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. B. Shaw, and I. D. Aggarwal, ???Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers,??? J. Opt. Soc. Am. B 21, 1146-1155 (2004).
    [CrossRef]
  6. K. Ogusu, H. Li, and M. Kitao, ???Brillouin-gain coefficients of chalcogenide glasses,??? J. Opt. Soc. Am. B 21, 1302-1304 (2004).
    [CrossRef]
  7. S. Spalter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S. W. Cheong and R. E. Slusher, ???Strong self-phase modulation in planar chalcogenide glass waveguides,??? Opt. Lett. 27, 363-365 (2002).
    [CrossRef]
  8. Y. Ruan, W. Li, R. Jarvis, N. Madsen, A. Rode, and B. Luther-Davies, ???Fabrication and characterization of low loss rib chalcogenide waveguides made by dry etching???, Opt. Express 12, 5140-5145 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-21-5140</a>.
    [CrossRef] [PubMed]
  9. J. F. Viens, C. Meneghini, A. Villeneuve, T. V. Galstian, E. J. Knystautas, M. A. Duguay, K. A. Richardson, and T. Cardinal, ???Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses,??? J. Lightwave Technol. 17, 1184-1191 (1999).
    [CrossRef]
  10. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, ???Low-loss waveguides in ultrafast laser-deposited As2S3 chalcogenide films,??? J. Opt. Soc. Am. B 20, 1844-1852 (2003).
    [CrossRef]
  11. D. J. Gibson and J. A. Harrington, ???Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,??? J. Appl. Phys. 95, 3895-3900 (2004).
    [CrossRef]
  12. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, ???Hollow multilayer photonic bandap fibers for NIR applications,??? Opt. Express 12, 1510-1517 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-8-1510</a>.
    [CrossRef] [PubMed]
  13. J. P. DeNeufville, S. C. Moss, and S. R. Ovshinsky, ???Photostructural transformations in amorphous As2Se3 and As2S3 films,??? J. Non-Crystalline Sol. 13, 191-223 (1973/74).
    [CrossRef]
  14. M. Vlcek, S. Schroeter, J. Cech, T. Wagner, and T. Glaser, ???Selective etching of chalcogenides and its application for fabrication of diffractive optical elements,??? J. Non-Crystalline Sol. 326&327, 515-518 (2003).
    [CrossRef]
  15. R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, ???Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides,??? Opt. Comm. 230, 301-307 (2004).
    [CrossRef]
  16. S. Ramachandran and S. G. Bishop, ???Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,??? Appl. Phys. Lett. 74, 13-15 (1999).
    [CrossRef]
  17. R. M. Bryce, H. T. Nguyen, P. Nakeeran, T. Clement, C. J. Haugen, R. R. Tykwinski, R. G. DeCorby, and J. N. McMullin, ???Polyamide-imide polymer thin films for integrated optics,??? Thin Solid Films 458, 233-236 (2004).
    [CrossRef]
  18. P. N. Kumta and S. H. Risbud, ???Review: Rare-earth chalcogenides ??? an emerging class of optical materials,??? J. Mat. Sci. 29, 1135-1158 (1994).
    [CrossRef]
  19. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, ???Direct UV patterning of waveguide devices in As2Se3 thin films,??? J. Vac. Sci. Tech. A 22, 1044-1047, (2004).
    [CrossRef]
  20. C. V. Shank and R. V. Schmidt, ???Optical technique for producing 0.1-µ periodic surface structures,??? Appl. Phys. Lett. 23, 154-155 (1973).
    [CrossRef]
  21. R. G. Walker, ???Simple and accurate loss measurement technique for semiconductor optical waveguides,??? Electron. Lett. 21, 581-583 (1985).
    [CrossRef]
  22. L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, ???Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,??? Appl. Phys. Lett. 64, 536-538 (1994).
    [CrossRef]
  23. J. Buus, ???Analytical approximation for the reflectivity of DH lasers,??? IEEE J. Quantum Electron. 17, 2256-2267 (1981).
    [CrossRef]
  24. A. C. van Popta, R. G. DeCorby, C. J. Haugen, T. Robinson, J. N. McMullin, and S. O. Kasap, ???Photoinduced refractive index change in As2Se3 by 633 nm illumination,??? Opt. Express 10, 639-644 (2002), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-639">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-639</a>.
    [CrossRef] [PubMed]
  25. T. G. Robinson, R. G. DeCorby, J. N. McMullin, C. J. Haugen, S. O. Kasap, and D. Tonchev, ???Strong Bragg gratings photoinduced by 633-nm illumination in evaporated As2Se3 thin films,??? Opt. Lett. 28, 459-461 (2003).
    [CrossRef] [PubMed]
  26. K. Shimakawa, A. Kolobov, and S. R. Elliott, ???Photoinduced effects and metastability in amorphous semiconductors and insulators,??? Advances in Physics 44, 475-588, (1995).
    [CrossRef]
  27. C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Anderson, and M. Kristensen, ???Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings,??? Electron. Lett. 31, 1437-1438 (1995).
    [CrossRef]

Advances in Physics

K. Shimakawa, A. Kolobov, and S. R. Elliott, ???Photoinduced effects and metastability in amorphous semiconductors and insulators,??? Advances in Physics 44, 475-588, (1995).
[CrossRef]

Appl. Phys. Lett.

C. V. Shank and R. V. Schmidt, ???Optical technique for producing 0.1-µ periodic surface structures,??? Appl. Phys. Lett. 23, 154-155 (1973).
[CrossRef]

L. S. Yu, Q. Z. Liu, S. A. Pappert, P. K. L. Yu, and S. S. Lau, ???Laser spectral linewidth dependence on waveguide loss measurements using the Fabry-Perot method,??? Appl. Phys. Lett. 64, 536-538 (1994).
[CrossRef]

S. Ramachandran and S. G. Bishop, ???Low loss photoinduced waveguides in rapid thermally annealed films of chalcogenide glasses,??? Appl. Phys. Lett. 74, 13-15 (1999).
[CrossRef]

Electron. Lett.

R. G. Walker, ???Simple and accurate loss measurement technique for semiconductor optical waveguides,??? Electron. Lett. 21, 581-583 (1985).
[CrossRef]

C. V. Poulsen, J. Hubner, T. Rasmussen, L. U. A. Anderson, and M. Kristensen, ???Characterization of dispersion properties in planar waveguides using UV-induced Bragg gratings,??? Electron. Lett. 31, 1437-1438 (1995).
[CrossRef]

IEEE J. Quantum Electron.

J. Buus, ???Analytical approximation for the reflectivity of DH lasers,??? IEEE J. Quantum Electron. 17, 2256-2267 (1981).
[CrossRef]

J. Appl. Phys.

D. J. Gibson and J. A. Harrington, ???Extrusion of hollow waveguide performs with a one-dimensional photonic bandgap structure,??? J. Appl. Phys. 95, 3895-3900 (2004).
[CrossRef]

J. Lightwave Technol.

J. Mat. Sci.

P. N. Kumta and S. H. Risbud, ???Review: Rare-earth chalcogenides ??? an emerging class of optical materials,??? J. Mat. Sci. 29, 1135-1158 (1994).
[CrossRef]

J. Non-Crystalline Sol.

J. P. DeNeufville, S. C. Moss, and S. R. Ovshinsky, ???Photostructural transformations in amorphous As2Se3 and As2S3 films,??? J. Non-Crystalline Sol. 13, 191-223 (1973/74).
[CrossRef]

M. Vlcek, S. Schroeter, J. Cech, T. Wagner, and T. Glaser, ???Selective etching of chalcogenides and its application for fabrication of diffractive optical elements,??? J. Non-Crystalline Sol. 326&327, 515-518 (2003).
[CrossRef]

T. Cardinal, K. A. Richardson, H. Shim, A. Schulte, R. Beatty, K. Le Foulgoc, C. Meneghini, J. F. Viens, and A. Villeneuve, ???Non-linear optical properties of chalcogenide glasses in the system As-S-Se,??? J. Non-Crystalline Sol. 256&257, 353-360 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Tech. A

R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, ???Direct UV patterning of waveguide devices in As2Se3 thin films,??? J. Vac. Sci. Tech. A 22, 1044-1047, (2004).
[CrossRef]

Opt. Comm.

R. Vallee, S. Frederick, K. Asatryan, M. Fischer, and T. Galstian, ???Real-time observation of Bragg grating formation in As2S3 chalcogenide ridge waveguides,??? Opt. Comm. 230, 301-307 (2004).
[CrossRef]

Opt. Commun.

R. Rangel-Rojo, T. Kosa, E. Hajto, P. J. S. Ewen, A. E. Owen, A. K. Kar, and B. S. Wherrett, ???Near-infrared optical nonlinearities in amorphous chalcogenides,??? Opt. Commun. 109, 145-150 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Thin Solid Films

R. M. Bryce, H. T. Nguyen, P. Nakeeran, T. Clement, C. J. Haugen, R. R. Tykwinski, R. G. DeCorby, and J. N. McMullin, ???Polyamide-imide polymer thin films for integrated optics,??? Thin Solid Films 458, 233-236 (2004).
[CrossRef]

Other

G. Lenz and S. Spalter, ???Chalcogenide glasses,??? in Nonlinear Photonic Crystals, R. E. Slusher and B.J. Eggleton eds. (Springer-Verlag, New York, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) SEM image of the cleaved facet of a rib waveguide. The color difference between the upper and lower PAI claddings is an artifact of the SEM imaging and is not visible in microscope images. The slight deformation at the top of the upper cladding is probably due to the film stretching upon dicing into very small pieces required for SEM imaging. (b) Schematic illustration of the rib geometry assumed for simulations.

Fig. 2.
Fig. 2.

Experimental arrangement used to embed Bragg gratings in rib waveguides. Inset: SEM images of gratings written by this technique, with period approximately 290 nm. From these low contrast SEM images, the uncertainty in estimating the grating period is at least +/-5 nm.

Fig. 3.
Fig. 3.

Simulated (a, b) and experimental (c, d) near field images of fundamental mode at 1480 nm for a rib waveguide with nominal width of 3.8 µm (a, c) and first order mode at 980 nm for a rib waveguide with nominal width of 4.2 µm (b, d). An etch depth of 100 nm was estimated from SEM images and used in the simulations. The horizontal mode profile, obtained by scanning an apertured photodetector through the magnified near-field image, is shown in (e).

Fig.4.
Fig.4.

Schematic diagram of the experimental setup used for Fabry-Perot loss measurements.

Fig. 5.
Fig. 5.

(a) A typical Fabry-Perot fringe pattern. Output intensity normalized to the input intensity is plotted against time (as the laser temperature and emission wavelength are ramped in time). The variation of wavelength with time was not linear, so the fringes do not exhibit a regular spacing. (b) Bar chart showing distribution of losses for 8 waveguides within a single sample. Inset: typical scattered light streak image.

Fig. 6.
Fig. 6.

(a) A typical Bragg grating stop band for a fundamental TM mode, measured with the input polarization well controlled. (b) Spectral features associated with 2 TE modes and 2 TM modes, for a Bragg grating embedded in a waveguide with rib width of 4.2 µm. The polarization is controlled in order to associate each stop band with a TE mode (as for the two longer wavelength stop bands, upper figure) or a TM mode (as for the two shorter wavelength stop bands, lower figure).

Tables (1)

Tables Icon

Table 1: Theoretical and Experimental Modal Indices

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

loss = 1 L 10 log [ 1 R ( K 1 2 1 ) ( K 1 2 + 1 ) ]

Metrics