Abstract

A new method for synthesizing a full-color computer-generated hologram (CGH) of real-existing objects has been proposed. In this method, the synthesizing process of CGHs and the adjustments of magnifications for each wavelength are considered based on parabolic sampling of three-dimensional (3-D) Fourier spectra. Our method requires only one-dimensional (1-D) azimuth scanning of objects, does not require any approximations in the synthesizing process, and can perform efficient magnification adjustments required for color reconstruction. Experimental results have been presented to verify the principle and validity of this method.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. W. Lohmann and D. P. Paris, ???Binary Fraunhofer holograms, generated by computer,??? Appl. Opt. 6, 1739???1748 (1967).
    [CrossRef] [PubMed]
  2. M. Yang and J. Ding, ???Area encoding for design of phase-only computer-generated holograms,??? Opt. Commun. 203, 51???60 (2002).
    [CrossRef]
  3. T. Mishina, M Okui, and F. Okano, ???Viewing-zone enlargement method for sampled hologram that uses high-order diffraction,??? Appl. Opt. 41, 1489???1499 (2002).
    [CrossRef] [PubMed]
  4. T. Yatagai, ???Stereoscopic approach to 3-D display using computer-generated holograms,??? Appl. Opt. 15, 2722???2729 (1976).
    [CrossRef] [PubMed]
  5. D. Abookasis and J. Rosen, ???Computer-generated holograms of three-dimensional objects synthesized from their multiple angular viewpoints,??? J. Opt. Soc. Am. A 20, 1537???1545 (2003).
    [CrossRef]
  6. Y. Sando, M. Itoh and T. Yatagai, ???Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects,??? Opt. Lett. 28, 2518???2520 (2003).
    [CrossRef] [PubMed]
  7. Y. Sando, M. Itoh, and T. Yatagai, ???Color computer-generated holograms from projection images,??? Opt. Express 12, 2487???2493 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2487</a>.
    [CrossRef] [PubMed]
  8. M-Y. Chiu, H. H. Barrett and R. G. Simpson, ???Three-dimensional reconstruction from planar projections,??? J. Opt. Soc. Am. 70, 755???762 (1980).
    [CrossRef]

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

M. Yang and J. Ding, ???Area encoding for design of phase-only computer-generated holograms,??? Opt. Commun. 203, 51???60 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Soc. Am.

M-Y. Chiu, H. H. Barrett and R. G. Simpson, ???Three-dimensional reconstruction from planar projections,??? J. Opt. Soc. Am. 70, 755???762 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

A virtual optical system for 3-D objects.

Fig. 2.
Fig. 2.

Schematics of the principle of 3-D CST. (a) Orthogonal projection in the real space and (b) a sectional plane in the 3-D Fourier space obtained from a projection image.

Fig. 3.
Fig. 3.

Paraboloid of revolution. (a) Components identical to objects waves and (b) intersections between the paraboloid of revolution and a sectional Fourier plane.

Fig. 4.
Fig. 4.

Extractive area on the u-v plane from (a) one projection image and (b) a series of projection images.

Fig. 5.
Fig. 5.

A recording optical system.

Fig. 6.
Fig. 6.

Adjustments of magnifications.

Fig. 7.
Fig. 7.

Color projection images at θ=17°.

Fig. 8.
Fig. 8.

Numerical reconstructed images.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g ( x 0 , y 0 ) = O ( x , y , z ) exp { i 2 π λ [ x 0 x + y 0 y f ( x 0 2 + y 0 2 ) z 2 f 2 ] } dxdydz ,
g ( u , v ) = O ( x , y , z ) exp { i 2 π [ u x + v y λ 2 ( u 2 + v 2 ) z ] } dxdydz
= { O ( x , y , z ) exp [ i 2 π ( u x + vy + w z ) ] dxdydz } w = λ ( u 2 + v 2 ) 2
= [ O ( x , y , z ) ] w = λ ( u 2 + v 2 ) 2 ,
w cos θ + u sin θ = 0
w = λ 2 ( u 2 + v 2 ) .
( u tan θ λ ) 2 + v 2 = ( tan θ λ ) 2 , w = u tan θ .

Metrics