Abstract

We report the bi-directional transmission of 8×10Gb/s signals using an in-line SOA over 80km SMF-28 with matching DCF for the first time. Our results suggest very promising applications for bi-directional transmission in metro and access networks with simple configuration and low cost.

©2004 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
10.7 Gb/s uncompensated transmission over a 470 km hybrid fiber link with in-line SOAs using MLSE and duobinary signals

John D. Downie, Jason Hurley, and Yihong Mauro
Opt. Express 16(20) 15759-15764 (2008)

28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON

Zhengxuan Li, Lilin Yi, Xiaodong Wang, and Weisheng Hu
Opt. Express 23(16) 20249-20256 (2015)

Transmission of 8 × 480-Gb/s super-Nyquist-filtering 9-QAM-like signal at 100 GHz-grid over 5000-km SMF-28 and twenty-five 100 GHz-grid ROADMs

Jianjun Yu, Junwen Zhang, Ze Dong, Zhensheng Jia, Hung-Chang Chien, Yi Cai, Xin Xiao, and Xinying Li
Opt. Express 21(13) 15686-15691 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
    [Crossref]
  2. J. Yu and P. Jeppesen, “bi-directional WDM transmission by use of SOAs as inline amplifiers without isolators,” in OSA Trends in Optics and Photonics (TOPS)Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2001), pp.WDD-58.
  3. J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).
  4. Y. Sun and A. K. Srivastava, et al., “error-free transmission of 32×2.5Gb/s DWDM channels over 125km of allwave fiber using cascaded in-line semiconductor optical amplifiers,” Proc. OAA’99, post-deadline paper no. PDP6, Nara, Japan, June 1999.
  5. M. yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Lett. 8, 58–60 (1996)
    [Crossref]
  6. Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.
  7. P. S. Cho, Y. Achiam, and G. L. Yurista, et al., “investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF70.

2002 (1)

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

1997 (1)

M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
[Crossref]

1996 (1)

M. yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Lett. 8, 58–60 (1996)
[Crossref]

Achiam, Y.

P. S. Cho, Y. Achiam, and G. L. Yurista, et al., “investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF70.

Buxens, A.

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

Cho, P. S.

P. S. Cho, Y. Achiam, and G. L. Yurista, et al., “investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF70.

Clausen, A.

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

Dong, Y.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

Hagele, V.

M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
[Crossref]

Inoue, K.

M. yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Lett. 8, 58–60 (1996)
[Crossref]

Jeppesen, P.

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

J. Yu and P. Jeppesen, “bi-directional WDM transmission by use of SOAs as inline amplifiers without isolators,” in OSA Trends in Optics and Photonics (TOPS)Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2001), pp.WDD-58.

Li, Z.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

Luo, C.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

matera, F.

M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
[Crossref]

Mo, J.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

Settembre, M.

M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
[Crossref]

Srivastava, A. K.

Y. Sun and A. K. Srivastava, et al., “error-free transmission of 32×2.5Gb/s DWDM channels over 125km of allwave fiber using cascaded in-line semiconductor optical amplifiers,” Proc. OAA’99, post-deadline paper no. PDP6, Nara, Japan, June 1999.

Sun, Y.

Y. Sun and A. K. Srivastava, et al., “error-free transmission of 32×2.5Gb/s DWDM channels over 125km of allwave fiber using cascaded in-line semiconductor optical amplifiers,” Proc. OAA’99, post-deadline paper no. PDP6, Nara, Japan, June 1999.

Wang, Y.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

yoshino, M.

M. yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Lett. 8, 58–60 (1996)
[Crossref]

Yu, J.

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

J. Yu and P. Jeppesen, “bi-directional WDM transmission by use of SOAs as inline amplifiers without isolators,” in OSA Trends in Optics and Photonics (TOPS)Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2001), pp.WDD-58.

Yurista, G. L.

P. S. Cho, Y. Achiam, and G. L. Yurista, et al., “investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF70.

IEEE Photon. Technol. Lett. (1)

J. Yu, A. Buxens, A. Clausen, and P. Jeppesen, “16×10Gb/s WDM bidirectional gating in a semiconductor optical amplifier for optical cross connects exploiting network connection symmetry,” IEEE Photon. Technol. Lett. 12, 702–704 (2002).

IEEE Photonics Technology Lett. (1)

M. yoshino and K. Inoue, “Improvement of saturation output power in a semiconductor laser amplifier through pumping light injection,” IEEE Photonics Technology Lett. 8, 58–60 (1996)
[Crossref]

J. Lightwave Technol. (1)

M. Settembre, F. matera, and V. Hagele, et al., “cascaded optical communication systems with in-line semiconductor optical amplifiers,” J. Lightwave Technol. 15, 962–967 (1997).
[Crossref]

Other (4)

J. Yu and P. Jeppesen, “bi-directional WDM transmission by use of SOAs as inline amplifiers without isolators,” in OSA Trends in Optics and Photonics (TOPS)Vol. 54, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2001), pp.WDD-58.

Y. Sun and A. K. Srivastava, et al., “error-free transmission of 32×2.5Gb/s DWDM channels over 125km of allwave fiber using cascaded in-line semiconductor optical amplifiers,” Proc. OAA’99, post-deadline paper no. PDP6, Nara, Japan, June 1999.

Y. Dong, Z. Li, J. Mo, Y. Wang, and C. Luo, “8×10.709Gb/s WDM transmission over 1050km SMF using cascaded in-line semiconductor optical amplifier and DPSK modulation format,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF61.

P. S. Cho, Y. Achiam, and G. L. Yurista, et al., “investigation of SOA nonlinearities on the amplification of high spectral efficiency signals,” in OSA Trends in Optics and Photonics (TOPS)Vol. 57, Optical Fiber Communication Conference, Technical Digest, Post-conference Edition (Optical Society of America, Washington DC, 2004), pp: MF70.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental setup. PC: polarization controller, Cir: circulator, TOF: tunable optical filter. The total power at different locations when the signal is transmitted from location A to B is labeled.
Fig. 2.
Fig. 2. Measured optical spectrum after transmission over 80km SMF-28 at point C (a) and D (b) with SOA or without SOA, respectively. Resolution is 0.05nm.
Fig. 3.
Fig. 3. BER performances. Inset (a): DPSK signal after transmission, inset (b): OOK signal after transmission.

Metrics