Abstract

We report on real-time Raman spectroscopic studies of optically trapped living cells and organelles using an inverted confocal laser-tweezers-Raman-spectroscopy (LTRS) system. The LTRS system was used to hold a single living cell in a physiological solution or to hold a functional organelle within a living cell and consequently measured its Raman spectra. We have measured the changes in Raman spectra of a trapped yeast cell as the function of the temperature of the bathing solution and studied the irreversible cell degeneration during the heat denaturation. In addition, we measured the in-vitro Raman spectra of the nuclei within living pine cells and B. sporeformer, Strep. salivarius, and E. coli bacteria suspended in solution and showed the possibility of using LTRS system as a sensor for rapid identification of microbes in a fluid.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–300 (1986).
    [Crossref] [PubMed]
  2. A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
    [Crossref] [PubMed]
  3. M. P. Sheetz ed., Methods in Cell Biology, Vol. 55, (Academic Press, San Diego, Calif., 1998).
  4. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
    [Crossref] [PubMed]
  5. K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
    [Crossref] [PubMed]
  6. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
    [Crossref] [PubMed]
  7. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
    [Crossref]
  8. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
    [Crossref] [PubMed]
  9. C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
    [Crossref]
  10. C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
    [Crossref]
  11. K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” Trends Anal. Chem. 20 (5), 255–262 (2001).
    [Crossref]
  12. M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
    [Crossref] [PubMed]
  13. G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
    [Crossref] [PubMed]
  14. W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
    [Crossref]
  15. C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
    [Crossref] [PubMed]
  16. K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
    [Crossref]
  17. B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
    [Crossref] [PubMed]
  18. K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
    [Crossref] [PubMed]
  19. W. H. Nelson and J. F. Sperry, Modern techniques for rapid microbiological analysis. W. Nelson ed., (VCH Publishers, New York, N.Y.1991), pp.97–143.
  20. A. T. Tu, Raman spectroscopy in biology: principle and applications, (Wiely, New York, 1982).
  21. Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
    [Crossref]
  22. Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
    [Crossref]

2004 (1)

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

2003 (1)

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

2002 (3)

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[Crossref]

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[Crossref]

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

2001 (3)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
[Crossref] [PubMed]

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” Trends Anal. Chem. 20 (5), 255–262 (2001).
[Crossref]

2000 (3)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
[Crossref]

1999 (2)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
[Crossref] [PubMed]

1998 (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
[Crossref] [PubMed]

1992 (1)

W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[Crossref]

1990 (1)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

1987 (1)

A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
[Crossref] [PubMed]

1986 (1)

Ajito, K.

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” Trends Anal. Chem. 20 (5), 255–262 (2001).
[Crossref]

Ananthakrishnan, R.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Arlt, J.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Arndt-Jovin, D. J.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Ashkin,

Ashkin, A.

A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
[Crossref] [PubMed]

Bruining, H. A.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Bryant, P. E.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Choo-Smith, L. P.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Chu, S.

Cunninggham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

de Mul, F. F. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Dholakia, K.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Dinno, M. A.

Dziedzic, J. M.

Dziedzic, K. M.

A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
[Crossref] [PubMed]

Endtz, H. P.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

Gapes, J. R.

K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
[Crossref]

Greve, J.

C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
[Crossref] [PubMed]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Guck, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Hamaguchi, H.

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

Hamaguhci, H.

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Harris, J. M.

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

Houlne, M. P.

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

Jovin, T. M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Karashima, T.

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

Kas, J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Kleimeyer, J. A.

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

Li, Y. Q.

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[Crossref]

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[Crossref]

MacDonald, M. P.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Manoharan, R.

W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[Crossref]

Maquelin, K.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

McNaughton, D.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
[Crossref] [PubMed]

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Nelson, W. H.

W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[Crossref]

W. H. Nelson and J. F. Sperry, Modern techniques for rapid microbiological analysis. W. Nelson ed., (VCH Publishers, New York, N.Y.1991), pp.97–143.

Nieminen, T. A.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

Ogura, T.

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Otto, C.

C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
[Crossref] [PubMed]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Paterson, L.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Puppels, G. J.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Robert-Nicoud, M.

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

Schnitzer, M. J.

K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
[Crossref] [PubMed]

Schuster, K. C.

K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
[Crossref]

Sibbett, W.

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

Sijtsema, N. M.

C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
[Crossref] [PubMed]

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Sjostrom, C. M.

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

Smith, B.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Sperry, J. F.

W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[Crossref]

W. H. Nelson and J. F. Sperry, Modern techniques for rapid microbiological analysis. W. Nelson ed., (VCH Publishers, New York, N.Y.1991), pp.97–143.

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Tait, B.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
[Crossref] [PubMed]

Torimitsu, K.

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” Trends Anal. Chem. 20 (5), 255–262 (2001).
[Crossref]

Tu, A. T.

A. T. Tu, Raman spectroscopy in biology: principle and applications, (Wiely, New York, 1982).

Uibel, R. H.

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

Urlaub, E.

K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
[Crossref]

van Vreeswijk, T.

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Visscher, K.

K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
[Crossref] [PubMed]

Wood, B. R.

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
[Crossref] [PubMed]

Xie, C. A.

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[Crossref]

C. A. Xie, M. A. Dinno, and Y. Q. Li, “Near-infrared Raman spectroscopy of single optically trapped biological cells,” Opt. Lett. 27, 249–251 (2002).
[Crossref]

Yamane, T.

A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
[Crossref] [PubMed]

Yamanoto, M.

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

Anal. Chem. (2)

M. P. Houlne, C. M. Sjostrom, R. H. Uibel, J. A. Kleimeyer, and J. M. Harris, “Confocal Raman microscopy for monitoring chemical reactions on single optically trapped, solid-phase support particles,” Anal. Chem. 74, 4311–4319 (2002).
[Crossref] [PubMed]

K. Maquelin, L. P. Choo-Smith, T. van Vreeswijk, B. Smith, H. A. Bruining, H. P. Endtz, and G. J. Puppels, “Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium,” Anal. Chem. 72, 12–19 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. A. Xie and Y. Q. Li, “Raman spectra and optical trapping of highly refractive and nontransparent particles,” Appl. Phys. Lett. 81, 951–953 (2002).
[Crossref]

Appl. Spectrosc. Rev. (1)

W. H. Nelson, R. Manoharan, and J. F. Sperry, “UV resonance Raman studies of bacteria,” Appl. Spectrosc. Rev. 27, 67–124 (1992).
[Crossref]

Biochem. Biophys.. Acta (1)

B. R. Wood, B. Tait, and D. McNaughton, “Micro-Raman characterisation of the R to T state transition of haemoglobin within a single living erythrocyte,” Biochem. Biophys.. Acta,  1539, 58–70 (2001).
[Crossref] [PubMed]

Eur. Biophys. J. (1)

C. Otto, N. M. Sijtsema, and J. Greve, “Confocal Raman microspectroscopy of the activation of single neutrophilic granulocytes,” Eur. Biophys. J. 27, 582–589 (1998).
[Crossref] [PubMed]

J. Microbiol Meth. (1)

K. C. Schuster, E. Urlaub, and J. R. Gapes, “Single-cell analysis of bacteria by Raman microscopy: spectral information on the chemical composition of cells and on the heterogeneity in a culture,” J. Microbiol Meth. 42, 29–38 (2000).
[Crossref]

J. Raman Spectrosc. (2)

Y. Huang, T. Karashima, M. Yamanoto, and H. Hamaguchi, “Molecular-level pursuit of yeast mitosis by time- and space-resolved Raman spectroscopy,” J. Raman Spectrosc. 34, 1–3 (2003).
[Crossref]

Y. Huang, T. Karashima, M. Yamanoto, T. Ogura, and H. Hamaguhci, “Raman spectroscopic signature of life in a living yeast cell,” J. Raman Spectrosc. 35, 525–526 (2004).
[Crossref]

Nature (4)

G. J. Puppels, F. F. M. de Mul, C. Otto, J. Greve, M. Robert-Nicoud, D. J. Arndt-Jovin, and T. M. Jovin, “Studying single living cells and chromosomes by confocal Raman microscopy,” Nature,  347, 301–303 (1990).
[Crossref] [PubMed]

A. Ashkin, K. M. Dziedzic, and T. Yamane, “Optical trapping and manipulation of single cells using infrared laser beams,” Nature,  330, 769–771 (1987).
[Crossref] [PubMed]

K. Visscher, M. J. Schnitzer, and S. M. Block, “Single kinesin molecules studied with a molecular force clamp,” Nature,  400, 184–189 (1999).
[Crossref] [PubMed]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop,“ Optical alignment and spinning of laser-trapped microscopic particles,” Nature,  394, 348–350 (1998).
[Crossref]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunninggham, and J. Kas, “Optical deformability of soft biological dielectrics,” Phys. Rev. Lett. 84, 5451–5454 (2000).
[Crossref] [PubMed]

Science (2)

L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science,  292, 912–914 (2001).
[Crossref] [PubMed]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science,  283, 1689–1695 (1999).
[Crossref] [PubMed]

Trends Anal. Chem. (1)

K. Ajito and K. Torimitsu, “Near-infrared Raman spectroscopy of single particles,” Trends Anal. Chem. 20 (5), 255–262 (2001).
[Crossref]

Other (3)

M. P. Sheetz ed., Methods in Cell Biology, Vol. 55, (Academic Press, San Diego, Calif., 1998).

W. H. Nelson and J. F. Sperry, Modern techniques for rapid microbiological analysis. W. Nelson ed., (VCH Publishers, New York, N.Y.1991), pp.97–143.

A. T. Tu, Raman spectroscopy in biology: principle and applications, (Wiely, New York, 1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup of the combined laser tweezers and Raman spectroscopy system. Abbreviations: M, mirror; L, lens; DM, dichroic mirror; PH, pinhole; HNF, holograph notch filter.

Fig. 2.
Fig. 2.

NIR Raman spectra of (a) a single trapped nucleus of a pine cell, (b) Bacillus sporeformer, (c) Streptococcus salivarius, and (d) E. coli bacterium suspended in a liquid medium. The pine nucleus is moved to the left from near the center of the cell, as indicated by the arrow in the image (a). The background spectrum measured without the cell in the trap has been subtracted for each spectrum. Spectrum (a) is average result of eight pine cells and spectrum (b–d) is the average result of 20 bacterial cells, respectively. Experimental conditions: trapping power 5 mW, Raman excitation power 15 mW; acquisition time 30 s for curve (a) and 60 s for curves (b, c, d). Raman line assignments are based on assignments in [13, 15, 16, 18]. Abbreviations: Phe, phenylalanine; Tyr, tyrosine; A, adenine; C, cytosine; G, guanine; BK, backbone; p, protein; def, deformation; str, stretching.

Fig. 3.
Fig. 3.

Raman spectra of a single yeast cell at different temperatures. A living yeast cell is held in the beam focus while the medium’s temperature is changed slowly. Experimental conditions: trapping power 2 mW, Raman excitation power 16 mW; acquisition time 20 s. Raman band assignments are based on the assignments in [13, 15, 16, 18].

Fig. 4.
Fig. 4.

Signal intensity of the 1004 cm-1 band as the function of temperature. The smooth curve is an exponential function fit.

Metrics