Abstract

We present a novel angle-resolved low coherence interferometry scheme for rapid measurement of depth-resolved angular scattering distributions to enable determination of scatterer size via elastic scattering properties. Depth resolution is achieved using a superluminescent diode in a modified Mach-Zehnder interferometer with the mixed signal and reference fields dispersed by an imaging spectrograph. The spectrograph slit is located in a Fourier transform plane of the scattering sample, enabling angle-resolved measurements over a 0.21 radian range. The capabilities of the new technique are demonstrated by recording the distribution of light scattered by a sub-surface layer of polystyrene microspheres in 40 milliseconds. The data are used to determine the microsphere size with good accuracy. Future clinical application to measuring the size of cell nuclei in living epithelial tissues using backscattered light is discussed.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. A. Wax, C.H. Yang, R.R. Dasari, and M.S. Feld, "Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 26, 322-324 (2001).
    [CrossRef]
  2. A. Wax, C. Yang, V. Backman, M. Kalashnikov, R.R. Dasari, and M.S. Feld, "Determination of particle size using the angular distribution of backscattered light as measured with low-coherence interferometry," J. Opt. Soc. Am. A 19, 737-744 (2002).
    [CrossRef]
  3. J.W. Pyhtila, R.N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3473">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3473</a>
    [CrossRef] [PubMed]
  4. A. Wax, C. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, "Cell organization and sub-structure measured using angle-resolved low coherence interferometry.," Biophys. J. 82, 2256-2264 (2002).
    [CrossRef] [PubMed]
  5. A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Res. 63, 3556-3559 (2003).
    [PubMed]
  6. A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, "In situ monitoring of neoplastic transformation and assessing efficacy of chemopreventive agents in rat esophagus epithelium using angle-resolved low-coherence interferometry," Proceedings of the AACR, Volume 45, (2004).
  7. M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
    [CrossRef] [PubMed]
  8. J.F. de Boer,, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067- 2069 (2003).
    [CrossRef] [PubMed]
  9. R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
    [CrossRef] [PubMed]
  10. R.A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
    [CrossRef] [PubMed]
  11. N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
    [CrossRef] [PubMed]
  12. M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
    [CrossRef] [PubMed]
  13. Y.L. Kim, Y. Liu, R.K. Wali, H.K. Roy, M.J. Goldberg, A.K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quant. Elec. 9, 243-256 (2003).
    [CrossRef]
  14. H.K. Roy, Y. Liu, R.K. Wali, Y.L. Kim, A.K. Kromine, M.J. Goldberg, and V. Backman, "Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis," Gastroenterology 126(4): p. 1071-1081 (2004).
    [CrossRef]

AACR (1)

A. Wax, J.W. Pyhtila, R.N. Graf, R. Nines, C.W. Boone, R.R. Dasari, M.S. Feld, V.E. Steele, and G.D. Stoner, "In situ monitoring of neoplastic transformation and assessing efficacy of chemopreventive agents in rat esophagus epithelium using angle-resolved low-coherence interferometry," Proceedings of the AACR, Volume 45, (2004).

Biophys. J. (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C.W. Boone, R.R. Dasari, and M.S. Feld, "Cell organization and sub-structure measured using angle-resolved low coherence interferometry.," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Cancer Res. (1)

A. Wax, C.H. Yang, M.G. Muller, R. Nines, C.W. Boone, V.E. Steele, G.D. Stoner, R.R. Dasari, and M.S. Feld, "In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry," Cancer Res. 63, 3556-3559 (2003).
[PubMed]

Gastroenterology (4 ) (1)

H.K. Roy, Y. Liu, R.K. Wali, Y.L. Kim, A.K. Kromine, M.J. Goldberg, and V. Backman, "Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis," Gastroenterology 126(4): p. 1071-1081 (2004).
[CrossRef]

IEEE J. Sel. Top. Quant. Elec. (1)

Y.L. Kim, Y. Liu, R.K. Wali, H.K. Roy, M.J. Goldberg, A.K. Kromin, K. Chen, and V. Backman, "Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer," IEEE J. Sel. Top. Quant. Elec. 9, 243-256 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (6)

R. Leitgeb, C.K. Hitzenberger, and A.F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-889</a>
[CrossRef] [PubMed]

J.W. Pyhtila, R.N. Graf, and A. Wax, "Determining nuclear morphology using an improved angle-resolved low coherence interferometry system," Opt. Express 11, 3473-3484 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3473">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-25-3473</a>
[CrossRef] [PubMed]

N.A. Nassif, B. Cense, B.H. Park, M.C. Pierce, S.H. Yun, B.E. Bouma, G.J. Tearney, T.C. Chen, and J.F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367</a>
[CrossRef] [PubMed]

M.A. Choma, M.V. Sarunic, C.H. Yang, and J.A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183</a>
[CrossRef] [PubMed]

R.A. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A.F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2156</a>
[CrossRef] [PubMed]

M. Wojtkowski, V.J. Srinivasan, T.H. Ko, J.G. Fujimoto, A. Kowalczyk, and J.S. Duker, "Ultrahighresolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004), <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-11-2404</a>
[CrossRef] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Schematic of faLCI system. (b) Illustration relating detected scattering angle to slit of spectrograph.

Fig. 2.
Fig. 2.

Typical faLCI data for sample of polystyrene beads. (a) Total signal, acquired in 40 msec, (b) reference field intensity, (c) signal field intensity and (d) extracted interference signal.

Fig. 3.
Fig. 3.

Axial spatial cross-correlation function for coverslip sample as a function of depth and angle. Note width of coverslip is correctly determined. Right plot shows angular distribution taken by ensemble averaging over 0.2 mm (~1 MFP) closest to surface (points). Low pass filter allows a noise reduction (line).

Fig. 4.
Fig. 4.

Size determination made using faLCI data. (a) Filtered data is compared to best fit Mie theory as determined by (b) Chi-squared minimization. Determine size: 10.2 +/- 1.7 μm compared with 10.1 µm actual size.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( λ m , y n ) = E r ( λ m , y n ) 2 + E s ( λ m , y n ) 2 + 2 Re E s ( λ m , y n ) E r * ( λ m , y n ) cos ϕ ,
Γ SR ( z , y n ) = d k e i k z E s ( k , y n ) E r * ( k , y n ) cos ϕ .
E r ( k ) = E o exp [ ( ( k k o ) / Δ k ) 2 ] exp [ ( ( y y o ) / Δ y ) 2 ] exp [ i k Δ l ]
E s ( k , θ ) = j E o exp [ ( ( k k o ) / Δ k ) 2 ] exp [ i k l j ] S j ( k , θ )
Γ SR ( z , y n ) = j dk E o 2 exp [ 2 ( ( k k o ) / Δ k ) 2 ] exp [ i k ( z Δ l + l j ) ]
× S j ( k , θ n = y n / f 4 ) cos ϕ .
Γ SR ( z , y n ) = E o 2 exp [ ( ( z Δ l + l j ) Δ k ) 2 / 8 ] S j ( k o , θ n = y n / f 4 ) cos ϕ .

Metrics