Abstract

We report on the use of thin, i.e. 10µm-thick, single-crystal LiNbO3, in low-voltage electrooptic prism scanners. These devices are fabricated by electric-field poling of a series of electrooptic prisms in a bulk crystal followed by high-energy ion implantation and subsequent etching of the poled samples. Such a single-crystal thin-film scanner, while having the same scanning functionality as with a bulk device, has an order-of-magnitude reduction in its required voltage; for example, a series of two prisms, of 2mm in total length, yields a deflection angle of 0.7° at 100V compared to more than 1.7kV for the same device in standard 200µm-thick LiNbO3 wafers.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. L. Lotspeich, ???Electrooptic light-beam deflection,??? IEEE Spectr. 5, 45???52 (1968).
    [CrossRef]
  2. T. C. Lee and J. D. Zook, ???Light beam deflection with electrooptic prisms,??? IEEE J. Quantum Electron. QE-4, 442???454 (1968).
    [CrossRef]
  3. Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, ???Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,??? J. Lightwave Technol. 12, 1401???1404 (1994).
    [CrossRef]
  4. Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, ???Shape-optimized electrooptic beam scanners: Analysis, design, and simulation,??? J. Lightwave Technol. 17, 108???114 (1999).
    [CrossRef]
  5. J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, ???Shape-optimized electrooptic beam scanners: Experiment,??? IEEE Photon. Technol. Lett. 11, 66???68 (1999).
    [CrossRef]
  6. D. A. Scrymegeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, ???Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,??? Appl. Phys. Lett. 81, 3140???3142 (2002).
    [CrossRef]
  7. M. Levy, R. M. Osgood, Jr., R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, ???Fabrication of single-crystal lithium niobate films by crystal ion slicing,??? Appl. Phys. Lett. 73, 2293???2295 (1998).
    [CrossRef]
  8. A. M. Radojevic, M. Levy, R. M. Osgood, Jr., D. H. Jundt, and H. Bakhru, ???Second-order optical nonlinearity of 10 µm-thick periodically poled lithium niobate films,??? Opt. Lett. 25, 1034???1036 (2000).
    [CrossRef]
  9. D. A. Scrymegeour, V. Gopalan, and T. E. Haynes, ???Crystal ion slicing of domain microengineered electro-optic devices on lithium niobate,??? Integr. Ferroelectr. 41, 35???42 (2001).
    [CrossRef]
  10. T. A. Ramadan, M. Levy, and R. M. Osgood, Jr., ???Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,??? Appl. Phys. Lett. 76, 1407???1409 (2000).
    [CrossRef]
  11. A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, ???Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,??? Appl. Phys. Lett. 74, 3197???3199 (1999).
    [CrossRef]

Appl. Phys. Lett.

D. A. Scrymegeour, A. Sharan, V. Gopalan, K. T. Gahagan, J. L. Casson, R. Sander, J. M. Robinson, F. Muhammad, P. Chandramani, and F. Kiamilev, ???Cascaded electro-optic scanning of laser light over large angles using domain microengineered ferroelectrics,??? Appl. Phys. Lett. 81, 3140???3142 (2002).
[CrossRef]

M. Levy, R. M. Osgood, Jr., R. Liu, L. E. Cross, G. S. Cargill, A. Kumar, and H. Bakhru, ???Fabrication of single-crystal lithium niobate films by crystal ion slicing,??? Appl. Phys. Lett. 73, 2293???2295 (1998).
[CrossRef]

T. A. Ramadan, M. Levy, and R. M. Osgood, Jr., ???Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3 thin films,??? Appl. Phys. Lett. 76, 1407???1409 (2000).
[CrossRef]

A. M. Radojevic, M. Levy, R. M. Osgood, A. Kumar, H. Bakhru, C. Tian, and C. Evans, ???Large etch-selectivity enhancement in the epitaxial liftoff of single-crystal LiNbO3 films,??? Appl. Phys. Lett. 74, 3197???3199 (1999).
[CrossRef]

IEEE J. Quantum Electron.

T. C. Lee and J. D. Zook, ???Light beam deflection with electrooptic prisms,??? IEEE J. Quantum Electron. QE-4, 442???454 (1968).
[CrossRef]

IEEE Photon. Technol. Lett.

J. C. Fang, M. J. Kawas, J. Zou, V. Gopalan, T. E. Schlesinger, and D. D. Stancil, ???Shape-optimized electrooptic beam scanners: Experiment,??? IEEE Photon. Technol. Lett. 11, 66???68 (1999).
[CrossRef]

IEEE Spectr.

J. L. Lotspeich, ???Electrooptic light-beam deflection,??? IEEE Spectr. 5, 45???52 (1968).
[CrossRef]

Integr. Ferroelectr.

D. A. Scrymegeour, V. Gopalan, and T. E. Haynes, ???Crystal ion slicing of domain microengineered electro-optic devices on lithium niobate,??? Integr. Ferroelectr. 41, 35???42 (2001).
[CrossRef]

J. Lightwave Technol.

Q. Chen, Y. Chiu, D. N. Lambeth, T. E. Schlesinger, and D. D. Stancil, ???Guided-wave electro-optic beam deflector using domain reversal in LiTaO3,??? J. Lightwave Technol. 12, 1401???1404 (1994).
[CrossRef]

Y. Chiu, J. Zou, D. D. Stancil, and T. E. Schlesinger, ???Shape-optimized electrooptic beam scanners: Analysis, design, and simulation,??? J. Lightwave Technol. 17, 108???114 (1999).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

BPM simulation of the first two stages in an expanding, or horn-shaped scanner in a LiNbO3 thin-film. Simulation parameters are λ=632.8nm, ne =2.2028, r 33=31pm/V, d=10µm, W 1=420µm, W 2=490µm and V=200V (red curve) and V=-200V (blue curve). The Gaussian-beam waist was 120µm.

Fig. 2.
Fig. 2.

Nomarski micrographs of (a) a single-prism deflector in bulk LiNbO3 and (b) the same prism after exfoliation; (c) and (d) show comparable results for a two-prism device. Each prism length is 1mm; see text for discussion of surface defects.

Fig. 3.
Fig. 3.

Sketch of the end facet of the packaged thin-film scanner. The CIS LiNbO3 film is sandwiched between two bulk LiNbO3 support wafers as described in the text.

Fig. 4.
Fig. 4.

Beam-deflection angle as a function of applied voltage for (a) a freestanding thin-film deflector with one prism (triangles) and two prisms (squares) and (b) a packaged thin-film deflector with two prisms. Solid lines show BPM simulation results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

θ = Δ n L W
Δ n = n e 3 r 33 V d

Metrics