Abstract

We propose a simple erbium-doped fiber laser configuration for obtaining multi-wavelength oscillation at room temperature, in which a few-mode fiber Bragg grating was used as the wavelength-selective component. An amplitude variation of 1.6 dB over 120 second period was obtained for three-wavelength oscillation at room temperature, which demonstrates stability of the output power. This multi-wavelength laser can be switched between dual- and triple-wavelength operations by properly adjusting polarization controller in the cavity. This multi-wavelength laser has the advantage of simple configuration, high stability, low cost and stable operation at room temperature.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, ???Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,??? IEEE Photon. Technol. Lett. 8, 60-62 (1996).
    [CrossRef]
  2. S. Yamashita, and K. Hotate, ???Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,??? Electron. Lett. 32, 1298-1299 (1996).
    [CrossRef]
  3. D. Wei, T. Li, Y. Zhao, and S. Jian, "Multiwavelength erbium-doped fiber ring lasers with overlap-written fiber Bragg gratings," Opt. Lett. 25, 1150-1152 (2000).
    [CrossRef]
  4. X. P. Dong, S. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror," Electron. Lett. 36, 1609-1610 (2000).
    [CrossRef]
  5. J. Sun, J. Qiu and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 182, 193-197 (2000).
    [CrossRef]
  6. O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-frequency operation of an Er-doped twincore fiber loop laser," IEEE Photon. Technol. Lett. 8, 63-65 (1996).
    [CrossRef]
  7. A. J. Poustie, N. Finlayson, and P. Harper, "Multiwavelength fiber laser using a spatial mode beating filter," Opt. Lett. 19, 716-718 (1994).
    [CrossRef] [PubMed]
  8. A. Bellemare, M. Karásek, M. Rochette, S. LaRochelle, and M. Têtu, "Room Temperature Multifrequency Erbium-Doped Fiber Lasers Anchored on the ITU Frequency Grid," J. Lightwave Technol. 18, 825-831 (2000).
    [CrossRef]
  9. G. Das and J. W. Y. Lit, "L-band multiwavelength fiber laser using an elliptical fiber," IEEE Photon. Technol. Lett. 14, 606-608 (2002).
    [CrossRef]
  10. Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612-614 (2002).
    [CrossRef]
  11. Y. W. Lee and B. Lee, "Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element," IEEE Photon. Technol. Lett. 15, 795-797 (2003).
    [CrossRef]
  12. L. Talaverano, S. Abad, S. Jarabo, and M. Lopez-Amo, "Multiwavelength Fiber Laser Sources with Bragg-Grating Sensor Multiplexing Capability," J. Lightwave Technol. 19, 553-558 (2001).
    [CrossRef]
  13. J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, "Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber," IEEE Photon. Technol. Lett. 10, 941-943 (1998).
    [CrossRef]
  14. Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313-317 (2004).
    [CrossRef]
  15. D. Zhao, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, "Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 191-193 (2001).
    [CrossRef]
  16. T. Mizunami, T. V. Djambova, T. Niiho, and S. Gupta, "Bragg Gratings in Multimode and Few-Mode Optical Fibers," J. Lightwave Technol. 18, 230-235 (2000).
    [CrossRef]
  17. K. H. Wanser, K. F.Voss, and A. D. Kersey, "Novel fiber devices and sensors based on multimode fiber Bragg gratings," Proc. SPIE 2360, 265-268 (1994).
    [CrossRef]
  18. D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, "Enhanced UV photosensitivity in boron codoped germanosilicate fibres," Electron. Lett. 29, 45-47(1993).
    [CrossRef]
  19. K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, "Photosensitivity in optical fibers," Annu. Rev. Mater. Sci. 23, 125-157 (1993).
    [CrossRef]
  20. Y. G. Han, C. S. Kim, U. C. Paek, and Y. Chung, "Performance enhancement of long-period fiber gratings for strain and temperature sensing," IEICE Trans. Electron. E-83C, 282-286 (2000).
  21. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, "Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings," Opt. Express 12, 2056-2061 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2056.">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-10-2056.</a>
    [CrossRef] [PubMed]

Annu. Rev. Mater. Sci.

K. O. Hill, B. Malo, F. Bilodeau, and D. C. Johnson, "Photosensitivity in optical fibers," Annu. Rev. Mater. Sci. 23, 125-157 (1993).
[CrossRef]

Electron. Lett.

D. L. Williams, B. J. Ainslie, J. R. Armitage, R. Kashyap, and R. Campbell, "Enhanced UV photosensitivity in boron codoped germanosilicate fibres," Electron. Lett. 29, 45-47(1993).
[CrossRef]

X. P. Dong, S. Li, K. S. Chiang, M. N. Ng, and B. C. B. Chu, "Multiwavelength erbium-doped fibre laser based on a high-birefringence fibre loop mirror," Electron. Lett. 36, 1609-1610 (2000).
[CrossRef]

S. Yamashita, and K. Hotate, ???Multiwavelength erbium-doped fiber laser using intracavity etalon and cooled by liquid nitrogen,??? Electron. Lett. 32, 1298-1299 (1996).
[CrossRef]

IEEE Photon. Technol. Lett.

D. Zhao, K. T. Chan, Y. Liu, L. Zhang, and I. Bennion, "Wavelength-switched optical pulse generation in a fiber ring laser with a Fabry-Perot semiconductor modulator and a sampled fiber Bragg grating," IEEE Photon. Technol. Lett. 13, 191-193 (2001).
[CrossRef]

O. Graydon, W. H. Loh, R. I. Laming, and L. Dong, "Triple-frequency operation of an Er-doped twincore fiber loop laser," IEEE Photon. Technol. Lett. 8, 63-65 (1996).
[CrossRef]

G. Das and J. W. Y. Lit, "L-band multiwavelength fiber laser using an elliptical fiber," IEEE Photon. Technol. Lett. 14, 606-608 (2002).
[CrossRef]

Q. Mao and J. W. Y. Lit, "Switchable Multiwavelength Erbium-Doped Fiber Laser With Cascaded Fiber Grating Cavities," IEEE Photon. Technol. Lett. 14, 612-614 (2002).
[CrossRef]

Y. W. Lee and B. Lee, "Wavelength-switchable erbium-doped fiber ring laser using spectral polarization-dependent loss element," IEEE Photon. Technol. Lett. 15, 795-797 (2003).
[CrossRef]

J. Hernandez-Cordero, V. A. Kozlov, A. L. G. Carter, and T. F. Morse, "Fiber laser polarization tuning using a Bragg grating in a Hi-Bi fiber," IEEE Photon. Technol. Lett. 10, 941-943 (1998).
[CrossRef]

J. Chow, G. Town, B. Eggleton, M. Ibsen, K. Sugden, and I. Bennion, ???Multiwavelength generation in an erbium-doped fiber laser using in-fiber comb filters,??? IEEE Photon. Technol. Lett. 8, 60-62 (1996).
[CrossRef]

IEICE Trans. Electron.

Y. G. Han, C. S. Kim, U. C. Paek, and Y. Chung, "Performance enhancement of long-period fiber gratings for strain and temperature sensing," IEICE Trans. Electron. E-83C, 282-286 (2000).

J. Lightwave Technol.

Opt. Commun.

Z. Chun-Liu, Y. Xiufeng, L. Chao, N. J. Hong, G. Xin, P. R. Chaudhuri, and D. Xinyong, "Switchable multi-wavelength erbium-doped fiber lasers by using cascaded fiber Bragg gratings written in high birefringence fiber," Opt. Commun. 230, 313-317 (2004).
[CrossRef]

J. Sun, J. Qiu and D. Huang, "Multiwavelength erbium-doped fiber lasers exploiting polarization hole burning," Opt. Commun. 182, 193-197 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

K. H. Wanser, K. F.Voss, and A. D. Kersey, "Novel fiber devices and sensors based on multimode fiber Bragg gratings," Proc. SPIE 2360, 265-268 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig.1.
Fig.1.

The refractive index profile of the fabricated few-mode fiber.

Fig.2.
Fig.2.

The reflection spectrum of fabricated FMFG.

Fig. 3.
Fig. 3.

Configuration of the multi-wavelength erbium-doped fiber laser.

Fig. 4.
Fig. 4.

Simultaneous three-wavelength oscillations of the laser using a few-mode fiber grating (FMFG).

Fig. 5.
Fig. 5.

The stability of simultaneous three-wavelength laser (10 times repeated scans).

Fig. 6.
Fig. 6.

Output spectra of dual-wavelength laser operation with different states of PC.

Metrics