Abstract

The electromagnetic field enhancement (FE) at the end of the probe of an Apertureless Scanning Near-field Optical Microscope (ASNOM) is used to write nanometric dots in a phase-change medium. The FE acts as a heat source that allows the transition from amorphous to crystalline phase in a Ge2Sb2Te5 layer. Through the 2D Finite Element Method (FEM) we predict the size of the dot as a function of both the illumination duration and the incoming power density. Numerical results are found to be in good agreement with preliminary experimental data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. H.J. Mamin, R.P. Ried, B.D. Terris and D. Rugar, �??High-density data storage based on the atomic force microscope,�?? in Proceedings of IEEE 87, 1014-1027 (1999).
    [CrossRef]
  2. B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen and P. Vettiger, �??Ion-beam patterning of magnetic films using stencil masks,�?? Appl. Phys. Lett. 75, 403-405 (1999).
    [CrossRef]
  3. E. Betzig, J.K. Trautman, R.Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder and C.H. Chang, �??Near-field magnetooptics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  4. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita and S. K¨ammer, �??Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,�?? Jpn. J. Appl. Phys. 35, 443-447 (1996).
    [CrossRef]
  5. L. Novotny, R.X. Bian and X.S. Xie, �??Theory of nanometric optical tweezers,�?? Phys. Rev. Lett. 79, 645-648 (1997).
    [CrossRef]
  6. O.J.F. Martin and C. Girard, �??Controlling and tuning strong optical field gradients at a local probe microscope tip apex,�?? Appl. Phys. Lett. 70, 705-707 (1997).
    [CrossRef]
  7. Y.C. Martin, H.F. Hamann and H.L. Wickramasinghe, �??Strength of the electric field in apertureless near-field optical microscopy,�?? J. Appl. Phys. 89, 5774-5778 (2001).
    [CrossRef]
  8. P. Royer, D. Barchiesi, G. Lerondel, R. Bachelot, �??Near-Field Optical Patterning and Structuring Based on Local- Field Enhancement at the Extremity of a Metal Tip,�?? Phil. Trans. R. Soc. Lond. A 362, 821-842 (2004).
    [CrossRef]
  9. F. H�??Dhili, R. Bachelot, G. Lerondel, D. Barchiesi and P. Royer, �??Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,�?? Appl. Phys. Lett. 79, 4019-4021 (2001).
    [CrossRef]
  10. R. Bachelot, F. H�??Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot and K. Lahlil, �??Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,�?? J. Appl. Phys. 94, 2060-2072 (2003).
    [CrossRef]
  11. F. Zenhausern, M.P. O�??Boyle and H.K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623-1625 (1994).
    [CrossRef]
  12. R. Bachelot, P. Gleyzes and A.C. Boccara, �??Near-field optical microscope based on local perturbation of a diffraction spot,�?? Opt. Lett. 20, 1924-1926 (1995).
    [CrossRef] [PubMed]
  13. L.D. Landau, E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).
  14. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, �??Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,�?? J. Appl. Phys. 65, 2849-2856 (1991).
    [CrossRef]
  15. M. Born, E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).
  16. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).
  17. R. Fikri, T. Grosges and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,�?? Opt. Commun. 232, 15-23 (2004).
    [CrossRef]
  18. R. Fikri, T. Grosges and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,�?? Opt. Lett. 28, 2147-2149 (2003).
    [CrossRef] [PubMed]

Appl. Phys. Lett.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen and P. Vettiger, �??Ion-beam patterning of magnetic films using stencil masks,�?? Appl. Phys. Lett. 75, 403-405 (1999).
[CrossRef]

E. Betzig, J.K. Trautman, R.Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder and C.H. Chang, �??Near-field magnetooptics and high density data storage,�?? Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

O.J.F. Martin and C. Girard, �??Controlling and tuning strong optical field gradients at a local probe microscope tip apex,�?? Appl. Phys. Lett. 70, 705-707 (1997).
[CrossRef]

F. H�??Dhili, R. Bachelot, G. Lerondel, D. Barchiesi and P. Royer, �??Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,�?? Appl. Phys. Lett. 79, 4019-4021 (2001).
[CrossRef]

F. Zenhausern, M.P. O�??Boyle and H.K. Wickramasinghe, �??Apertureless near-field optical microscope,�?? Appl. Phys. Lett. 65, 1623-1625 (1994).
[CrossRef]

IEEE

H.J. Mamin, R.P. Ried, B.D. Terris and D. Rugar, �??High-density data storage based on the atomic force microscope,�?? in Proceedings of IEEE 87, 1014-1027 (1999).
[CrossRef]

J. Appl. Phys.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira and M. Takao, �??Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,�?? J. Appl. Phys. 65, 2849-2856 (1991).
[CrossRef]

R. Bachelot, F. H�??Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot and K. Lahlil, �??Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,�?? J. Appl. Phys. 94, 2060-2072 (2003).
[CrossRef]

Y.C. Martin, H.F. Hamann and H.L. Wickramasinghe, �??Strength of the electric field in apertureless near-field optical microscopy,�?? J. Appl. Phys. 89, 5774-5778 (2001).
[CrossRef]

Jpn. J. Appl. Phys.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita and S. K¨ammer, �??Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,�?? Jpn. J. Appl. Phys. 35, 443-447 (1996).
[CrossRef]

Opt. Commun.

R. Fikri, T. Grosges and D. Barchiesi, �??Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,�?? Opt. Commun. 232, 15-23 (2004).
[CrossRef]

Opt. Lett.

Phil. Trans. R. Soc. Lond. A

P. Royer, D. Barchiesi, G. Lerondel, R. Bachelot, �??Near-Field Optical Patterning and Structuring Based on Local- Field Enhancement at the Extremity of a Metal Tip,�?? Phil. Trans. R. Soc. Lond. A 362, 821-842 (2004).
[CrossRef]

Phys. Rev. Lett.

L. Novotny, R.X. Bian and X.S. Xie, �??Theory of nanometric optical tweezers,�?? Phys. Rev. Lett. 79, 645-648 (1997).
[CrossRef]

Other

L.D. Landau, E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).

M. Born, E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).

Supplementary Material (2)

» Media 1: AVI (847 KB)     
» Media 2: AVI (656 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

ASNOM experimental setup. Insert (a) presents the recording process by means of a metallic tip and insert (b) describes the readout process.

Fig. 2.
Fig. 2.

Scheme of the modeled structure. The relative permittivities are given in Sec. 2.

Fig. 3.
Fig. 3.

Schematic temporal evolution of the dot size for a laser pulse of duration τ>τpc , where τpc is the characteristic crystallization time for the Ge2Sb2Te5 (τpc ~50 ns). The Qk (εr (tk )) denotes the kth computation of the absorbed optical power density.

Fig. 4.
Fig. 4.

(a) Temporal evolution of the logarithmic scale of the optical intensity showing the Field Enhancement at the end of the probe and the influence of the permittivity variation induced by phase-change (Video 847KB). (b) Temporal evolution of the absorbed power density. (Video 656kB)

Fig. 5.
Fig. 5.

(a) Atomic Force Microscopy (AFM) data. (b) Near-field optical image. (c) Intensity profile along the direction of illumination x.

Fig. 6.
Fig. 6.

Dot size as a function of time for various illumination laser power PW relatively to the threshold power PW0. The lateral size remains stable after 1.75 µs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ Cristal ( t ) + Heat ( t ) } = Q em ( ε r ( t ) )
Q em ( ε r ( t ) ) = ω ε 0 ( ε r ( t ) ) 2 E ( ε r ( t ) ) 2 ,
Q em ( ε r ( t ) ) = k = 1 N = Int ( t τ cp ) Q k 1 ( ε r ( t k 1 ) ) θ [ t t k 1 ] θ [ t k t ] ,
[ · ( 1 ε r ) + ω 2 c 2 ] H z = 0 in Ω ,
H z = H i on Γ 0 and 1 ε r H z n = j ω c H z , on Γ 1
Ω [ · ( 1 ε r H z ) + ω 2 c 2 H z ] · ν d Ω = 0 ,

Metrics