Abstract

The electromagnetic field enhancement (FE) at the end of the probe of an Apertureless Scanning Near-field Optical Microscope (ASNOM) is used to write nanometric dots in a phase-change medium. The FE acts as a heat source that allows the transition from amorphous to crystalline phase in a Ge2Sb2Te5 layer. Through the 2D Finite Element Method (FEM) we predict the size of the dot as a function of both the illumination duration and the incoming power density. Numerical results are found to be in good agreement with preliminary experimental data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
    [Crossref]
  2. B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
    [Crossref]
  3. E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [Crossref]
  4. S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
    [Crossref]
  5. L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [Crossref]
  6. O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
    [Crossref]
  7. Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
    [Crossref]
  8. P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
    [Crossref]
  9. F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
    [Crossref]
  10. R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
    [Crossref]
  11. F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [Crossref]
  12. R. Bachelot, P. Gleyzes, and A.C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
    [Crossref] [PubMed]
  13. L.D. Landau and E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).
  14. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
    [Crossref]
  15. M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).
  16. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).
  17. R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
    [Crossref]
  18. R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,” Opt. Lett. 28, 2147–2149 (2003).
    [Crossref] [PubMed]

2004 (2)

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
[Crossref]

2003 (2)

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,” Opt. Lett. 28, 2147–2149 (2003).
[Crossref] [PubMed]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

2001 (2)

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[Crossref]

1999 (2)

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

1997 (2)

L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[Crossref]

1996 (1)

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

1995 (1)

1994 (1)

F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

1992 (1)

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

1991 (1)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Akahira, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Bachelot, R.

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

R. Bachelot, P. Gleyzes, and A.C. Boccara, “Near-field optical microscope based on local perturbation of a diffraction spot,” Opt. Lett. 20, 1924–1926 (1995).
[Crossref] [PubMed]

Baglin, J.E.E.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Barchiesi, D.

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,” Opt. Lett. 28, 2147–2149 (2003).
[Crossref] [PubMed]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

Betzig, E.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Bian, R.X.

L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Boccara, A.C.

Boilot, J.P.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Born, M.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

Chang, C.H.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Chaput, F.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Fikri, R.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,” Opt. Lett. 28, 2147–2149 (2003).
[Crossref] [PubMed]

Finn, P.L.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Folks, L.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Fujita, K.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Girard, C.

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[Crossref]

Gleyzes, P.

Grosges, T.

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
[Crossref]

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: the need for probe vibration-modeling,” Opt. Lett. 28, 2147–2149 (2003).
[Crossref] [PubMed]

Gyorgy, E.M.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

H’Dhili, F.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

Hamann, H.F.

Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[Crossref]

Hirotsune, A.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Hosaka, S.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Jin, J.

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).

Kämmer, S.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Kellock, A.J.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Kryder, M.H.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Lahlil, K.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Landau, L.D.

L.D. Landau and E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).

Landraud, N.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Larnpel, G.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Lerondel, G.

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

Lifschiz, E.M.

L.D. Landau and E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).

Mamin, H.J.

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

Martin, O.J.F.

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[Crossref]

Martin, Y.C.

Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[Crossref]

Miyamoto, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Nishiuchi, K.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Novotny, L.

L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

O’Boyle, M.P.

F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Ohno, E.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Peretti, J.

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Ried, R.P.

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

Rothuizen, H.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Royer, P.

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

Rugar, D.

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

Shintani, T.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Takao, M.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Terao, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Terris, B.D.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

Trautman, J.K.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Vettiger, P.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Weller, D.

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

Wickramasinghe, H.K.

F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Wickramasinghe, H.L.

Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

Wolfe, R.

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

Xie, X.S.

L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Yamada, N.

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

Yoshida, M.

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Zenhausern, F.

F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

Appl. Phys. Lett. (5)

B.D. Terris, L. Folks, D. Weller, J.E.E. Baglin, A.J. Kellock, H. Rothuizen, and P. Vettiger, “Ion-beam patterning of magnetic films using stencil masks,” Appl. Phys. Lett. 75, 403–405 (1999).
[Crossref]

E. Betzig, J.K. Trautman, R. Wolfe, E.M. Gyorgy, P.L. Finn, M.H. Kryder, and C.H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[Crossref]

O.J.F. Martin and C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[Crossref]

F. H’Dhili, R. Bachelot, G. Lerondel, D. Barchiesi, and P. Royer, “Near-field optics: Direct observation of the field enhancement below an apertureless probe using a photosensitive polymer,” Appl. Phys. Lett. 79, 4019–4021 (2001).
[Crossref]

F. Zenhausern, M.P. O’Boyle, and H.K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[Crossref]

in Proceedings of IEEE (1)

H.J. Mamin, R.P. Ried, B.D. Terris, and D. Rugar, “High-density data storage based on the atomic force microscope,” in Proceedings of IEEE 87, 1014–1027 (1999).
[Crossref]

J. Appl. Phys. (3)

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, “Rapid-phase transitions of GeTe-Sb2Te3 pseu-dobinary amorphous thin films for an optical disk memory,” J. Appl. Phys. 65, 2849–2856 (1991).
[Crossref]

R. Bachelot, F. H’Dhili, D. Barchiesi, G. Lerondel, R. Fikri, P. Royer, N. Landraud, J. Peretti, F. Chaput, G. Larnpel, J.P. Boilot, and K. Lahlil, “Apertureless near-field optical microscopy: A study of the local tip field enhancement using photosensitive azobenzene-containing films,” J. Appl. Phys. 94, 2060–2072 (2003).
[Crossref]

Y.C. Martin, H.F. Hamann, and H.L. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Hosaka, T. Shintani, M. Miyamoto, A. Hirotsune, M. Terao, M. Yoshida, K. Fujita, and S. Kämmer, “Nanometer-Sized Phase-Change Recording Using a Scanning Near-Field Optical Microscope with a Laser Diode,” Jpn. J. Appl. Phys. 35, 443–447 (1996).
[Crossref]

Opt. Commun. (1)

R. Fikri, T. Grosges, and D. Barchiesi, “Apertureless scanning near-field optical microscopy: numerical modeling of the lock-in detection,” Opt. Commun. 232, 15–23 (2004).
[Crossref]

Opt. Lett. (2)

Phil. Trans. R. Soc. Lond. A (1)

P. Royer, D. Barchiesi, G. Lerondel, and R. Bachelot, “Near-Field Optical Patterning and Structuring Based on Local-Field Enhancement at the Extremity of a Metal Tip,” Phil. Trans. R. Soc. Lond. A 362, 821–842 (2004).
[Crossref]

Phys. Rev. Lett. (1)

L. Novotny, R.X. Bian, and X.S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[Crossref]

Other (3)

L.D. Landau and E.M. Lifschiz, Elektrodynamik der Kontinua (Akademic-Verlag, Berlin, 1974).

M. Born and E. Wolf, Principle of Optics (Pergamon Press, Oxford, 1993).

J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, New York, 1993).

Supplementary Material (2)

» Media 1: AVI (847 KB)     
» Media 2: AVI (656 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

ASNOM experimental setup. Insert (a) presents the recording process by means of a metallic tip and insert (b) describes the readout process.

Fig. 2.
Fig. 2.

Scheme of the modeled structure. The relative permittivities are given in Sec. 2.

Fig. 3.
Fig. 3.

Schematic temporal evolution of the dot size for a laser pulse of duration τ>τpc , where τpc is the characteristic crystallization time for the Ge2Sb2Te5 (τpc ~50 ns). The Qk (εr (tk )) denotes the kth computation of the absorbed optical power density.

Fig. 4.
Fig. 4.

(a) Temporal evolution of the logarithmic scale of the optical intensity showing the Field Enhancement at the end of the probe and the influence of the permittivity variation induced by phase-change (Video 847KB). (b) Temporal evolution of the absorbed power density. (Video 656kB)

Fig. 5.
Fig. 5.

(a) Atomic Force Microscopy (AFM) data. (b) Near-field optical image. (c) Intensity profile along the direction of illumination x.

Fig. 6.
Fig. 6.

Dot size as a function of time for various illumination laser power PW relatively to the threshold power PW0. The lateral size remains stable after 1.75 µs.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

{ Cristal ( t ) + Heat ( t ) } = Q em ( ε r ( t ) )
Q em ( ε r ( t ) ) = ω ε 0 ( ε r ( t ) ) 2 E ( ε r ( t ) ) 2 ,
Q em ( ε r ( t ) ) = k = 1 N = Int ( t τ cp ) Q k 1 ( ε r ( t k 1 ) ) θ [ t t k 1 ] θ [ t k t ] ,
[ · ( 1 ε r ) + ω 2 c 2 ] H z = 0 in Ω ,
H z = H i on Γ 0 and 1 ε r H z n = j ω c H z , on Γ 1
Ω [ · ( 1 ε r H z ) + ω 2 c 2 H z ] · ν d Ω = 0 ,

Metrics