Abstract

The high frequency operation of a low-voltage electrooptic modulator based on a strip-loaded BaTiO3 thin film waveguide structure has been demonstrated. The epitaxial BaTiO3 thin film on an MgO substrate forms a composite structure with a low effective dielectric constant of 20.8 at 40 GHz. A 3.9 V half-wave voltage with a 3.7 GHz 3-dB bandwidth and a 150 pm/V effective electrooptic coefficient is obtained for the 3.2mm-long modulator at 1.55 µm. Broadband modulation up to 40 GHz is measured with a calibrated detection system. Numerical simulations indicate that the BaTiO3 thin film modulator has the potential for a 3-dB operational bandwidth in excess of 40 GHz through optimized design.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
    [CrossRef]
  2. D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
    [CrossRef]
  3. A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
    [CrossRef]
  4. P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
    [CrossRef]
  5. T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
    [CrossRef]
  6. P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
    [CrossRef]
  7. D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
    [CrossRef]
  8. P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
    [CrossRef]
  9. G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
    [CrossRef]
  10. D. M. Gill and A. Chowdhury, “Electro-optic polymer-based modulator design and perormance for 40 Gb/s system applications,” J. Lightwave Technol. 20, 2145–2153 (2002).
    [CrossRef]
  11. P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.
  12. N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
    [CrossRef]
  13. K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).
  14. K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
    [CrossRef]
  15. G. Gonzales, Microwave Transition Amplifiers, (Englewood Cliffs, NJ: Prentice, 1984).
  16. A. Chowdhury and L. McCaughan, “Figure of merit for near-velocity-matched traveling-wave modulators,” Opt. Lett. 26, 1317–1319 (2001).
    [CrossRef]

2004 (2)

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

2003 (3)

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

2002 (2)

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

D. M. Gill and A. Chowdhury, “Electro-optic polymer-based modulator design and perormance for 40 Gb/s system applications,” J. Lightwave Technol. 20, 2145–2153 (2002).
[CrossRef]

2001 (1)

1999 (1)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

1997 (1)

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

1994 (2)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

1980 (1)

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
[CrossRef]

Bahl, I.

K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).

Bernasconi, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Bhartia, P.

K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).

Buchal, C.

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Bulmer, C. G.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

Chowdhury, A.

Conrad, C.W.

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

Dagli, N.

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

Duelli, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Ford, G.

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

Garg, R.

K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).

Garrett, M. H.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Gill, D. M.

Gill, D.M.

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

Gonzales, G.

G. Gonzales, Microwave Transition Amplifiers, (Englewood Cliffs, NJ: Prentice, 1984).

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

Greenblatt, A. S.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

Günter, P.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Gupta, K. C.

K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).

Hamano, T.

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
[CrossRef]

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Ho, S.T.

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

Kubota, K.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
[CrossRef]

Marks, T.J.

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

McCaughan, L.

McElhanon, R. W.

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

Meier, A. L.

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Mikami, O.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
[CrossRef]

Ni, J.

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

Noda, J.

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
[CrossRef]

Petraru, A.

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Rytz, D.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Schlesser, R.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Schmid, M.

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Schubert, J.

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

Tang, P.

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Towner, D. J.

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
[CrossRef]

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Towner, D.J.

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

Wessels, B. W.

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
[CrossRef]

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Wessels, B.W.

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

Wu, X.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Zgonik, M.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Zhu, Y.

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Appl. Phys. Lett. (4)

D.M. Gill, C.W. Conrad, G. Ford, B.W. Wessels, and S.T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[CrossRef]

A. Petraru, J. Schubert, M. Schmid, and C. Buchal, “Ferroelectric BaTiO3 thin film optical waveguide modulators,” Appl. Phys. Lett. 81, 1375–1377 (2002).
[CrossRef]

P. Tang, D.J. Towner, A. L. Meier, and B. W. Wessels, “Low-voltage, polarization-insensitive, electro-optic modulator based on a polydomain barium titanate thin film,” Appl. Phys. Lett. 85, 4615–4617 (2004).
[CrossRef]

T. Hamano, D. J. Towner, and B. W. Wessels, “Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range,” Appl. Phys. Lett. 83, 5274–5276 (2003).
[CrossRef]

Electron. Lett. (1)

P. Tang, D.J. Towner, A. L. Meier, and B.W. Wessels, “Polarisation-insensitive Si3N4 strip-loaded BaTiO3 thin-film waveguide with low propagation losses,” Electron. Lett. 39,1651–1652 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kubota, J. Noda, and O. Mikami, “Traveling wave optical modulator using a directional coupler LiNbO3 waveguide,” IEEE J. Quantum Electron. 16, 754–760 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. Tang, D. J. Towner, A. L. Meier, and B. W. Wessels, “Low-loss electrooptic BaTiO3 thin film waveguide modulator,” IEEE Photon. Technol. Lett. 16, 1837–1839 (2004).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

N. Dagli, “Wide-bandwidth lasers and modulators for RF photonics,” IEEE Trans. Microwave Theory Tech. 47, 1151–1171 (1999).
[CrossRef]

J. Cryst. Growth (1)

D. J. Towner, J. Ni, T.J. Marks, and B.W. Wessels, “Effects of two-stage deposition on the structure and properties of heteroepitaxial BaTiO3 thin films,” J. Cryst. Growth 255, 107–113 (2003).
[CrossRef]

J. Lightwave Technol. (2)

G. K. Gopalakrishnan, W. K. Burns, R. W. McElhanon, C. G. Bulmer, and A. S. Greenblatt, “Performance and modeling of broadband LiNbO3 traveling wave optical intensity modulators,” J. Lightwave Technol. 12, 1807–1818 (1994).
[CrossRef]

D. M. Gill and A. Chowdhury, “Electro-optic polymer-based modulator design and perormance for 40 Gb/s system applications,” J. Lightwave Technol. 20, 2145–2153 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M. H. Garrett, D. Rytz, Y. Zhu, and X. Wu, “Dielectric, elastic, piezoelectric, electrooptic, and elasto-optic tensors of BaTiO3 crystals,” Phys. Rev. B 50, 5941–5949 (1994).
[CrossRef]

Other (3)

K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, Microstrip Lines and Slotlines, (Norwood, MA: Artech House, 1996).

G. Gonzales, Microwave Transition Amplifiers, (Englewood Cliffs, NJ: Prentice, 1984).

P. Tang, A. L. Meier, D. J. Towner, T. Hamano, and B. W. Wessels, “BaTiO3 waveguide modulators with 360 pm/V effective electro-optic coefficient at 1.55 µm, ” in Optical Amplifiers and Their Applications/Integrated Photonics Research Topical Meetings (The Optical Society of America, Washington, DC, 2004), PD3-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Schematic cross-section of the electrooptic waveguide modulator. (b) Low frequency electrooptic modulator performance at 1561 nm wavelength. Applied 1 kHz triangle-driving voltages with 2 V DC bias on 3.2 mm long electrode (bottom trace, 4 V/div) and modulation output signal (top trace, 0.2 V/div).

Fig. 2.
Fig. 2.

Schematic diagram of the modulator characterization setup.

Fig.3.
Fig.3.

Microwave power loss characterization of the electrodes. (a) Reflected loss (S11); (b) transmitted loss (S21); (c) fitted loss assuming a linear and square root frequency dependence; (d) dielectric and radiation losses assuming a linear frequency dependence; (e) conductor loss assuming a square root frequency dependence.

Fig. 4.
Fig. 4.

(a) Measured 35 ps time delay for a 3.2 mm long electrodes. (b) Calculated effective microwave index as a function of frequency through measured electrical S-parameters.

Fig. 5.
Fig. 5.

Frequency response of the modulator. (a) Measured response from the calibrated detection system; (b) predicted response for Zm=30 Ω, Nm=3.3 at 40 GHz, αc=1.0 1 dB·cm -1·GHz -0.5 and αd=0.3 dB·cm -1·GHz -1 ; (c) calculated response for Zm=45 Ω, Nm=3.3 at 40 GHz, αc=0.5 dB·cm -1·GHz -0.5 and αd=0.3 dB·cm -1·GHz -1.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( f ) = α c · L · f + α d · L · f
N m = c · τ L
ε B a T i O 3 / m g O = 2 · N m 2 1
F = ( 1 . 484 n eff 3 r eff Γ α c λ G )

Metrics