Abstract

A frequency-unshifted and backward stimulated Rayleigh scattering can be produced in a linearly transparent but two-photon absorbing medium. Using a novel two-photon active dye solution as the nonlinear medium pumped by 532-nm and ~10-ns laser pulses, a highly directional backward stimulated scattering at the pump wavelength can be readily observed. The experimental results on spectral structure, spatial and temporal behaviors, and output/input relationship of this new type of stimulated scattering are presented. To explain the observed phenomenon and its experimental behaviors, a physical model of feedback mechanism provided by a two-photon-excitation enhanced Bragg grating inside the scattering medium is proposed. Comparing to other types of stimulated scattering, the stimulated Rayleigh-Bragg scattering exhibits the advantages of no-frequency shift, low threshold, and low requirement for pump spectral line-width.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).
  2. R. W. Boyd, Nonlinear Optics, (Academic, Boston, 1992).
  3. G. S. He and S. H. Liu, Physics of Nonlinear Optics, (World Scientific, Singapore, 2000).
  4. W. Kaiser and M. Maier, �??Stimulated Rayleigh, Brillouin and Raman spectroscopy,�?? in Laser Handbook, F. T. Arrecchi and E. O. Schulz-Dubois, ed., (North Holland, Amsterdam, 1972), p. 1077.
  5. G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, �??Stimulated Raman scattering from organic liquids,�?? Phys. Rev. Lett. 9, 455-457 (1962).
    [CrossRef]
  6. R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, �??Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,�?? Phys. Rev. Lett. 12, 592-595 (1964).
    [CrossRef]
  7. D. I. Mash, V.V. Morozov, V. S. Starunov, and I. L. Fabelinskii, �??Stimulated scattering of light of the Rayleigh-line wing,�?? JETP Lett. 2, 25-27 (1965).
  8. G. S. He and P. N. Prasad, �??Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,�?? Phys. Rev. A 41, 2687-2697 (1990).
    [CrossRef] [PubMed]
  9. R. M. Herman and M. A. Gray, �??Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,�?? Phys. Rev. Lett. 19, 824-828 (1967).
    [CrossRef]
  10. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggings, �??Stimulated thermal Rayleigh scattering,�?? Phys. Rev. Lett. 19, 828-830 (1967).
    [CrossRef]
  11. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, �??Stimulated thermal Rayleigh scattering in liquids,�?? Phys. Rev, 175, 271-274 (1968).
    [CrossRef]
  12. D. Pohl, I. Reinhold, and W. Kaiser, �??Experimental observation of stimulated thermal Brillouin scattering,�?? Phys. Rev. Lett. 20, 1141-1143 (1968).
    [CrossRef]
  13. V. I. Bespalov, A. M. Kubarev, and G. A. Pasmanik, �??Stimulated thermal scattering of short light pulses,�?? Phys. Rev. Lett. 24, 1274-1276 (1970).
    [CrossRef]
  14. K. Darée and W. Kaiser, �??Competition between stimulated Brillouin and Rayleigh scattering in absorbing media,�?? Phys. Rev. Lett. 26, 816-819 (1971).
    [CrossRef]
  15. P. Boissel, G. Hauchecorne, F. Kerherve, and G. Mayer, �?? Stimulated scattering induced by two-photon absorption,�?? Journal de Physique Lettres, 39, 319-322 (1978).
    [CrossRef]
  16. V. B. Karpov, V. V. Korobkin, and D. A. Dolgolenko, �??Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,�?? Sov. J. Quantum Electro. 21, 1235-1238 (1991).
    [CrossRef]
  17. G. S. He, G. C. Xu, P. N. Prasad, B. A. Reinhardt, J. C. Bhatt, R. McKellar, and A. G. Dillard, �??Two -photon absorption and optical-limiting properties of novel organic compounds,�?? Opt. Lett. 20, 435-437 (1995).
    [CrossRef] [PubMed]
  18. G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, �??Observation of stimulated emission by direct three-photon excitation,�?? Nature, 415, 767-770 (2002).
    [CrossRef] [PubMed]
  19. G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, �??Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores,�?? J. Chem. Phys. 120, 5275-5284 (2004).
    [CrossRef] [PubMed]
  20. R. G. Brewer and C. H. Townes, �??Standing waves in self-trapped light filaments,�?? Phys. Rev. Lett. 18, 196-200 (1967).
    [CrossRef]
  21. H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Sys. Tech. J. 48, 2909-2947 (1969).
  22. H. J. Hoffman, �??Thermally induced phase-conjugation by transient real-time holography: a review,�?? J. Opt. Soc. Am. B 3, 253-273 (1986).
    [CrossRef]
  23. I. C. Khoo and Y. Liang, �??Stimulated orientational and thermal scattering and self-starting optical phase conjugation with nematic liquid crystals,�?? Phys. Rev. E 62, 6722-6733 (2000).
    [CrossRef]

Bell Sys. Tech. J. (1)

H. Kogelnik, �??Coupled wave theory for thick hologram gratings,�?? Bell Sys. Tech. J. 48, 2909-2947 (1969).

J. Chem. Phys. (1)

G. S. He, T.-C. Lin, J. Dai, P. N. Prasad, R. Kannan, A. G. Dombroskie, R. A. Vaia, and L.-S. Tan, �??Degenerate two-photon-absorption spectral studies of highly two-photon active organic chromophores,�?? J. Chem. Phys. 120, 5275-5284 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

JETP Lett. (1)

D. I. Mash, V.V. Morozov, V. S. Starunov, and I. L. Fabelinskii, �??Stimulated scattering of light of the Rayleigh-line wing,�?? JETP Lett. 2, 25-27 (1965).

Journal de Physique Lettres (1)

P. Boissel, G. Hauchecorne, F. Kerherve, and G. Mayer, �?? Stimulated scattering induced by two-photon absorption,�?? Journal de Physique Lettres, 39, 319-322 (1978).
[CrossRef]

Laser Handbook (1)

W. Kaiser and M. Maier, �??Stimulated Rayleigh, Brillouin and Raman spectroscopy,�?? in Laser Handbook, F. T. Arrecchi and E. O. Schulz-Dubois, ed., (North Holland, Amsterdam, 1972), p. 1077.

Nature (1)

G. S. He, P. P. Markowicz, T.-C. Lin, and P. N. Prasad, �??Observation of stimulated emission by direct three-photon excitation,�?? Nature, 415, 767-770 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev (1)

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, �??Stimulated thermal Rayleigh scattering in liquids,�?? Phys. Rev, 175, 271-274 (1968).
[CrossRef]

Phys. Rev. A (1)

G. S. He and P. N. Prasad, �??Stimulated Kerr scattering and reorientation work of molecules in liquid CS2,�?? Phys. Rev. A 41, 2687-2697 (1990).
[CrossRef] [PubMed]

Phys. Rev. E (1)

I. C. Khoo and Y. Liang, �??Stimulated orientational and thermal scattering and self-starting optical phase conjugation with nematic liquid crystals,�?? Phys. Rev. E 62, 6722-6733 (2000).
[CrossRef]

Phys. Rev. Lett. (8)

R. M. Herman and M. A. Gray, �??Theoretical prediction of the stimulated thermal Rayleigh scattering in liquids,�?? Phys. Rev. Lett. 19, 824-828 (1967).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggings, �??Stimulated thermal Rayleigh scattering,�?? Phys. Rev. Lett. 19, 828-830 (1967).
[CrossRef]

G. Eckhardt, R. W. Hellwarth, F. J. McClung, S. E. Schwarz, D. Weiner, and E. J. Woodbury, �??Stimulated Raman scattering from organic liquids,�?? Phys. Rev. Lett. 9, 455-457 (1962).
[CrossRef]

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, �??Stimulated Brillouin scattering and coherent generation of intense hypersonic waves,�?? Phys. Rev. Lett. 12, 592-595 (1964).
[CrossRef]

D. Pohl, I. Reinhold, and W. Kaiser, �??Experimental observation of stimulated thermal Brillouin scattering,�?? Phys. Rev. Lett. 20, 1141-1143 (1968).
[CrossRef]

V. I. Bespalov, A. M. Kubarev, and G. A. Pasmanik, �??Stimulated thermal scattering of short light pulses,�?? Phys. Rev. Lett. 24, 1274-1276 (1970).
[CrossRef]

K. Darée and W. Kaiser, �??Competition between stimulated Brillouin and Rayleigh scattering in absorbing media,�?? Phys. Rev. Lett. 26, 816-819 (1971).
[CrossRef]

R. G. Brewer and C. H. Townes, �??Standing waves in self-trapped light filaments,�?? Phys. Rev. Lett. 18, 196-200 (1967).
[CrossRef]

Sov. J. Quantum Electro. (1)

V. B. Karpov, V. V. Korobkin, and D. A. Dolgolenko, �??Phase conjugation of XeCl excimer laser radiation by excitation of various types of stimulated light scattering,�?? Sov. J. Quantum Electro. 21, 1235-1238 (1991).
[CrossRef]

Other (3)

Y. R. Shen, The Principles of Nonlinear Optics, (Wiley, New York, 1984).

R. W. Boyd, Nonlinear Optics, (Academic, Boston, 1992).

G. S. He and S. H. Liu, Physics of Nonlinear Optics, (World Scientific, Singapore, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Linear absorption spectral curves for solutions of P RL802 in THF and for pure solvent THF. The chemical structure of the solute is shown in the top-right corner.

Fig. 2.
Fig. 2.

Experimental setup for observation of backward stimulated Rayleigh scattering from a two-photon absorbing dye solution.

Fig. 3.
Fig. 3.

(a) Two -photon excited fluorescence spectrum; (b) Decay of two-photon excited fluorescence emission.

Fig. 4.
Fig. 4.

Fabry-Perot interferograms of (a) the backward stimulated Rayleigh scattering beam from a 1-cm PRL802/THF solution of 0.01 M concentration, (b) a half of the 532-nm input pump beam, and (c) the two beams together. Pump line-width was ~0.08 cm-1 and the free spectral range of the Fabry-Perot interferometer was 0.5 cm-1.

Fig. 5.
Fig. 5.

Fabry-Perot interfemogram formed by both the backward stimulated Brillouin scattering beam (whole rings) from a 1-cm long THF solvent and the input pump laser beam (half-rings).

Fig. 6.
Fig. 6.

Measured waveforms of the pump pulse and backward stimulated Rayleigh scattering pulse at three input intensity levels: (a) 95 MW/cm2, (b) 130 MW/cm2, and (c) 180 MW/cm2.

Fig. 7.
Fig. 7.

Measured near-field patterns (a) and far-field patterns (b) of the pump beam (left) and backward stimulated Rayleigh scattering beam (right) at input intensity level of 160 MW/cm2.

Fig. 8.
Fig. 8.

(a) Measured nonlinear transmission of 532-nm pump pulses, the red dashed line is the fitting curve with a 2PA coefficient of β=9.46 cm/GW; (b) Measured output stimulated scattering energy vs. input pump energy.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = ( I 1 + I 2 ) + 2 I 1 I 2 cos ( 4 π n 0 z / λ 0 ) .
Δ n ( z ) = n 2 Δ I ( z ) = 2 n 2 I 1 I 2 cos ( 4 π n 0 / λ 0 ) = δ n 0 cos ( 4 π n 0 z / λ 0 ) .
R = t h 2 ( 2 π n 2 I 1 I 2 · L / λ 0 ) ,
R I 1 I 2 { 1 exp [ α ( λ 0 ) L ] } ,
( 2 π n 2 / λ 0 ) 2 L I 1 2 α ( λ 0 ) .

Metrics